DOI QR코드

DOI QR Code

Ameliorating Effect of Water Extract from Dendropanax morbifera Lev. on Memory Dysfunction in Streptozotocin-induced Diabetic Rats

스트렙토조토신(Streptozotocin) 유발 당뇨 동물모델에서 황칠나무 잎 추출물의 학습 및 기억력 개선 효과

  • Kim, Ji Hye (Jeollanamdo Institute of Natural Resources Research) ;
  • Bae, Dong hyuck (Jeollanamdo Institute of Natural Resources Research) ;
  • Lee, Uk (Division of Special-purpose Trees, National Institute of Forest Science) ;
  • Heo, Ho Jin (Division of Applied Life Sciences (BK21 plus), Institute of Agriculture and Life Sciences, Gyeongsang National University)
  • 김지혜 (전라남도천연자원연구원) ;
  • 배동혁 (전라남도천연자원연구원) ;
  • 이욱 (국립산림과학원 특용자원연구과) ;
  • 허호진 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원)
  • Received : 2016.03.22
  • Accepted : 2016.05.11
  • Published : 2016.06.30

Abstract

An anti-amnesic effect of water extract from Dendropanax morbifera Lev. leaves (DMW) on memory dysfunction in streptozotocin-induced diabetic rats was investigated to assess its potential industrial value. Daily administration of DMW (11 weeks) significantly reduced serum glucose, insulin, and blood urea nitrogen (BUN) levels increased by an intraperitoneal injection of streptozotocin (STZ, 55 mg/kg). In addition, the administration of DMW decreased escape latency and increased the time spent in the platform quadrant in the Morris water maze test. Step-through latency in a passive avoidance test was also improved. Finally, DMW produced ameliorating effects on STZ-induced cholinergic deficit through an inhibitory effect on acetylcholinesterase and the increment of acetylcholine level in the hippocampus. These results suggest that DMW might be used as a natural substance for improving diabetic induced cognitive impairment.

본 연구는 스트렙토조토신에 의해 당뇨가 유발된 기억력 감퇴 모델에서 황칠나무 잎 열수추출물(DMW)의 학습 및 기억력 개선 효과를 평가하기 위해 수행되어졌다. 6주령의 SD-래트를 총 5개 군으로 분리 하였고, 11주간 24시간 간격으로 DMW를 100과 300 mg/kg b.w.농도로 경구 투여 하였으며, 양성대조군으로 donepezil (1 mg/kg b.w.)을 처리하였다. 7일 간격으로 체중과 혈당을 측정하였으며 STZ군에 비해 DMW군에서 유의한 체중 증가를 확인 할 수 있었다. 혈당 측정 결과 DMW군에서 6주째부터 혈당이 감소하기 시작하였으며, STZ군에 비해 유의적인 혈당 감소를 나타내었다. 혈청 내 바이오마커 측정 결과 혈중 포도당은 DMW 시료군에서 유의하게 감소하였고, 인슐린 호르몬 농도와 혈액 요소질소 또한 유의한 감소를 나타내었다. 간 기능 수치와 TG, TC, 그리고 크레아틴 농도에서는 각 군 간의 유의적 차이는 확인할 수 없었다. Morris water maze test와 passive avoidance test를 통해 STZ로 유도한 당뇨 모델에서 학습 및 기억력 장애를 확인 하였으며, DMW를 투여함으로서 학습 및 기억력이 유의적으로 회복, 증가한 것을 확인할 수 있었다. 또한 뇌 해마에서 Ach 함량과 AchE 활성 측정 결과, 당뇨 대조군에 비해 Ach 함량은 증가하였으며, AchE의 활성은 유의적으로 감소 한 것을 확인 하였다. 본 연구 결과로 STZ로 유도된 고 혈당 동물모델에서 황칠나무 잎 열수추출물(DMW)의 당뇨 개선 및 학습, 기억력 개선 효과를 확인 할 수 있었다. 이는 당뇨의 개선 효과와 더불어 고 혈당으로 인한 퇴행성 치매의 예방과 치료에도 일부 효과적일 것으로 사료된다. 이러한 연구 결과를 바탕으로 황칠 열수추출물(DMW)이 당뇨에 의한 학습 및 기억력의 저하에 있어 효과적인 대안으로서 보다 더 넓은 분야에서 연구되기를 바라는 바이다.

Keywords

References

  1. Lee SH, Kun MD, Park WP. Clinical aspects of genetic testing for dementia. J. Korean Geriatr. Soc. 12: 5-10 (2008)
  2. DeJong RN. CNS manifestation of diabetes mellitus. Postgrad. Med. 61: 101-107 (1977) https://doi.org/10.1080/00325481.1977.11714510
  3. Kalmijin S, Feskens EJM, Launer LJ, Stijinen T, Kromhout D. Glucose intolerance, hyperinsulinemia and cognitive function in a general population of elderly men. Diabetologia 38: 1096-1102 (1995) https://doi.org/10.1007/BF00402181
  4. Sakurai T, Tsuchiya S. Superoxide production from non-enzymatically glycated protein. Febs Lett. 236: 406-410 (2006)
  5. Lones TJ. Oxidized low density lipoproteins: A role in the pathogenesis of atherosclerosis in diabetes. Diabetic Med. 8: 411-419 (1991) https://doi.org/10.1111/j.1464-5491.1991.tb01624.x
  6. Tai ES, Lim SC, Tan BY, Chew SK, Heng D, Tan CE. Screening for diabetes mellitus: A two-step approach in individuals with impaired fasting glucose improves in detection of those at risk of complications. Diabetic Med. 17: 771-775 (2000) https://doi.org/10.1046/j.1464-5491.2000.00382.x
  7. Pachman DR, Loprinzi CL, Grothey A, Ta LE. The search for treatments to reduce chemotherapy-induced peripheral neuropathy. J. Clin. Invest. 124: 72-74 (2014) https://doi.org/10.1172/JCI73908
  8. Park SA, Park J, Park CI, Jie YJ, Hwang YC, Kim YH, Jeon SH, Lee HM, Ha JH, Kim KJ, Park SN. Cellular antioxidant activity and whitening effects of Dendropanax morbifera leaf extracts. Korean J. Microbiol. Biotechnol. 41: 407-415 (2013) https://doi.org/10.4014/kjmb.1311.11001
  9. MacLennan AH, Wilson DH, Taylor AW. Prevalence and cost of alternative medicine in Australia. Lancet 347: 569-573 (1996) https://doi.org/10.1016/S0140-6736(96)91271-4
  10. Jeong BS, Jo JS, Pyo BS, Hwang B. Studies on the distribution of Dendropanax morbifera and component analysis of the golden lacquer. Korean Soc. Biotechnol. Bioeng. J. 10: 393-400 (1995)
  11. Kim HR, Chung HJ. Chemical characteristics of the leaves and the seeds of Korean Dendropanax (Dendropanax morvifera Lev.). J. Korean Soc. Appl. Bi. 43: 63-66 (2000)
  12. Mo JH, Oh SJ. Tyrosinase inhibitory activity and melanin production inhibitory activity of the methanol extract and fractions from Dendropanax morbifera Lev. Korean J. Aesthet. Cosmetol. 11: 275-280 (2013)
  13. Moon HI. Antidiabetic effects of dendropanoxide from leaves of Dendropanax morbifera leveille in normal and streptozotocininduced diabetic rats. Hum. Exp. Toxicol. 30: 870-875 (2010)
  14. Morris R. Developments of water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11: 47-60 (1984) https://doi.org/10.1016/0165-0270(84)90007-4
  15. Kim MJ, Choi SJ, Lim ST, Kim HK, Kim YJ, Woon HG, Shin DH. Zeatin supplement improves scopolamine-induced memory impairment in mice. Biosci. Biotech. Bioch. 72: 577-581 (2008) https://doi.org/10.1271/bbb.70480
  16. Vincent D, Segonzac G, Vincent MC. Colorimetric determination of acetylcholine by the hestrin hydroxylamine reaction and its application in pharmacy. Ann. Pharm. Fr. 16: 179-185 (1958)
  17. Ellman GL, Courtney KD, Andres V Jr., Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95 (1961) https://doi.org/10.1016/0006-2952(61)90145-9
  18. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, Melgarejo da Rosa M, Rubin MA, Schetinger MRC, Morsch VM. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 610: 42-48 (2009) https://doi.org/10.1016/j.ejphar.2009.03.032
  19. Kim JW, Cha JY, Heo JS, Jin HJ, Cho YS. Hypoglycemic effect of chlorella spp. CMS-1 hot water extract on streptozotocininduced diabetic rats. J. Life Sci. 18: 1584-1591 (2008) https://doi.org/10.5352/JLS.2008.18.11.1584
  20. Kim HS, Seong JH, Lee YG, Xie CL, Shin JM, Yoon HD. Improvements caused by silk sericin extract derived from silkworm in blood glucose and lipid concentration in diabetic rats. J. Korean Soc. Food Sci. Nutr. 23: 392-398 (2010)
  21. Kim SH, Hwang SY, Park OS, Kim MK, Chung YJ. Effect of Pinus densiflora extract on blood glucose level, OGTT and biochemical parameters in streptozotocin induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 34: 973-979 (2005) https://doi.org/10.3746/jkfn.2005.34.7.973
  22. Han YK, Park YK. Effect of Atractylodis rhizoma alba water extract on streptozotocin-induced diabetes in rats. Kor. J. Herbology 26: 23-30 (2011)
  23. Chae HJ, Lee IS, Moon HY. Effects of Schizandra cchinensis fruit extract on the hypoglycemia and hyperlipidemia in streptozotocin- induced diabetic rats. Korean Soc. Biotechnol. Bioeng. J. 26: 126-30 (2011)
  24. Won HJ, Lee HS, Kim JT, Hong CO, Koo YC, Lee KW. The anti-diabetic effects of kocat-d1 on streptozotocin-induced diabetic rats. Korean J. Food Sci. Technol. 42: 204-209 (2010)
  25. Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: A lifespan perspective. Lancet Neurol. 7: 184-190 (2008) https://doi.org/10.1016/S1474-4422(08)70021-8
  26. Kuhad A, Sethi R, Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci. 83: 128-134 (2008) https://doi.org/10.1016/j.lfs.2008.05.013
  27. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11: 47-60 (1984) https://doi.org/10.1016/0165-0270(84)90007-4
  28. Sakaguchi M, Koseki M, Wakamaysu M, Matsumura E. Effects of beta-casomorphin-5 on passive avoidance response in mice. Biosci. Biotech. Biochem. 67: 2501-2504 (2003) https://doi.org/10.1271/bbb.67.2501
  29. LeDoux JE. Emotional memory systems in the brain. Behav. Brain Res. 58: 69-79 (1993) https://doi.org/10.1016/0166-4328(93)90091-4
  30. Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 308: 1403 (1976)
  31. Ballard CG, Greig NH, Guillozet-Bongaarts AL, Enz A, Darvesh S. Cholinesterases: Roles in the brain during health and disease. Curr. Alzheimer Res. 2: 307-318 (2005) https://doi.org/10.2174/1567205054367838
  32. Das A, Shanker G, Nath C, Pal R, Singh S, Singh HK. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: Anticholinesterase and cognitive enhancing activities. Pharmacol. Biochem. Be. 73: 893-900 (2002) https://doi.org/10.1016/S0091-3057(02)00940-1
  33. Sato A, Sato Y, Uchida S. Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cerebral blood flow in the rat's cortex and hippocampus. Neurosci. Lett. 361: 90-93 (2004) https://doi.org/10.1016/j.neulet.2004.01.004
  34. Ghareeb DA, Hussen HM. Vanadium improves brain acetylcholinesterase activity on early stage alloxan-diabetic rats. Neurosci. Lett. 436: 44-47 (2008) https://doi.org/10.1016/j.neulet.2008.02.073