DOI QR코드

DOI QR Code

Scenario-Based Analysis on the Effects of Green Areas on the Improvement of Urban Thermal Environment

녹지 조성 시나리오에 따른 도시 열환경 개선 효과 분석

  • Min, Jin-Kyu (Dept. of Landscape Architecture, Kyungpook National University) ;
  • Eum, Jeong-Hee (Dept. of Landscape Architecture, Kyungpook National University) ;
  • Sung, Uk-Je (Dept. of Landscape Architecture, Kyungpook National University) ;
  • Son, Jeong-Min (Dept. of Landscape Architecture, Kyungpook National University) ;
  • Kim, Ju-Eun (Forest Ecology Division, Korea Forest Research Institute)
  • 민진규 (경북대학교 대학원 조경학과) ;
  • 엄정희 (경북대학교 산림과학․조경학부 조경학전공 ) ;
  • 성욱제 (경북대학교 대학원 조경학과) ;
  • 손정민 (경북대학교 대학원 조경학과 ) ;
  • 김주은 (국립산림과학원 산림생태연구과 )
  • Received : 2022.09.16
  • Accepted : 2022.10.20
  • Published : 2022.12.31

Abstract

To alleviate the urban heat island phenomenon, this study aims to quantitatively analyze the effects of neighborhood green spaces on the improvement of the thermal environment based on detailed scenarios of five types of green spaces, including parks, pocket parks, parking lot greening, roadside planting, and rooftop-wall greening. The ENVI-met 4.4.6v model, a microclimate simulation program, was used to analyze the effects of green spaces. As a result, it was found that the air temperature decreased as the planting density of the park increased, but the thermal comfort index PET, which is the degree of heat sensation felt by humans, was not directly proportional to temperature. The establishment of a pocket park reduced air temperature up to a radius of 56m, while the range of temperature reduction increased by about 12.5% when three additional pocket parks were established at 250m intervals. Unlike the air temperature, PET was only affected in the vicinity of the planted area, so there was no significant difference in the thermal comfort of the surrounding environment due to the construction of pocket parks. Changing the surface pavement from asphalt to lawn blocks and implementing rooftop or wall greening did not directly act as solar shading but positively affected air temperature reduction; PET showed no significant difference. Roadside planting showed a higher air temperature reduction effect as the planting interval was narrower, but PET was not directly proportional to tree density. In the case of shrub planting under trees, it did not significantly affect the air temperature reduction but positively affected the improvement of thermal comfort. This study can outline strategies for constructing neighborhood green spaces to solve the urban heat island phenomena and establish detailed strategies for efficient thermal environment improvements.

본 연구는 도시화 과정에서 발생한 도시 열섬현상을 완화하기 위해 도시 내에서 시행할 수 있는 생활권 녹지 조성 방법인 근린공원 조성, 소공원 조성, 주차장 녹화, 가로수 식재, 옥상·벽면 녹화 다섯 가지의 유형에 대해 세부 녹화 시나리오를 설정하여 열환경 개선 효과를 정량적으로 분석하는 것을 목표로 한다. 열환경 개선 효과를 확인하기 위해 미기후 시뮬레이션 프로그램인 ENVI-met 4.4.6v 모델을 활용하였다. 분석 결과, 공원의 식재 밀도가 높아질수록 기온이 낮아졌으나 사람이 느끼는 온열 체감 정도인 열쾌적성 지수 PET는 기온과 정비례하지 않았다. 수목이 증가하며 기온은 감소하였으나 상대습도가 소폭 증가 및 풍속이 다소 감소하였으며, 특히 PET에 많은 영향을 미치는 평균 복사온도가 수목 밀도와 정비례하지 않아 PET 역시 기온과 다른 양상을 보였다. 소공원은 한 개소 조성 후 효과를 확인하였을 때 최대 56m 반경까지 기온 저감 영향을 주었고, 250m 간격으로 세 개소를 추가 조성한 경우 기온 저감 범위가 약 12.5% 증가하였다. 기온과 달리 PET는 식재된 수목 영역 인근만 영향을 미쳐 소공원 조성 후 주변 환경의 열쾌적성은 큰 차이를 보이지 않았다. 지표면 포장을 아스팔트에서 잔디블록으로 변경하거나 옥상 및 벽면녹화 시행 등은 직접적인 일사 차양의 역할을 하지 않으나 기온 저감에 긍정적인 효과를 주었고, PET는 세 유형 모두 조성 전후 유의미한 차이를 보이지 않았다. 가로수는 식재 간격이 좁을수록 더 높은 기온 저감 효과를 보였으나, PET는 수목 밀도와 정비례하지 않았다. 가로수 하부 관목 식재의 경우 기온 저감에는 큰 영향을 주지 않으나 열쾌적성 개선에는 긍정적인 영향을 주었다. 본 연구는 도시 열섬현상 해소를 위한 생활권 녹지 조성 전략을 개괄적으로 제시하고 효율적인 열환경 개선을 위한 세부 전략을 수립하는 데에 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원을 받아 수행되었음(NRF-2019R1A2C1011042).

References

  1. Duarte, D. H., P. Shinzato, C. dos Santos Gusson and C. A. Alves(2015) The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate. Urban Climate 14: 224-239.  https://doi.org/10.1016/j.uclim.2015.09.006
  2. Eum, J. H., J. M. Son, K. H. Seo and K. H. Park(2018) Management strategies of ventilation paths for improving thermal environment-A case study of Gimhae, South Korea. Journal of the Korean Association of Geographic Information Studies 21(1): 115127. 
  3. Grant, I. F., A. J. Prata and R. P. Cechet(2000) The impact of the diurnal variation of albedo on the remote sensing of the daily mean albedo of grassland. Journal of Applied Meteorology 39(2): 231-244.  https://doi.org/10.1175/1520-0450(2000)039<0231:TIOTDV>2.0.CO;2
  4. Hoppe, P.(1999) The physiological equivalent temperature-A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43(2): 71-75.  https://doi.org/10.1007/s004840050118
  5. Jeong, D. I., K. H. Park and B. G. Song(2016) A comparison between in-situ PET and ENVI-met PET for evaluating outdoor thermal comfort. KIEAE Journal 16(1): 11-19.  https://doi.org/10.12813/kieae.2016.16.1.011
  6. Kim, J. H., W. D. Son and Y. H. Yoon(2012) Prediction of effect on outside thermal environment of building and green space arrangement by computational fluid dynamic. Journal of Environmental Science International 21(1): 69-81.  https://doi.org/10.5322/JES.2012.21.1.69
  7. Kim, M. K., S. P. Kim, N. H. Kim and H. G. Sohn(2014) Urbanization and urban heat island analysis using LANDSAT imagery: Sejong city as a case study. KSCE Journal of Civil and Environmental Engineering Research 34(3): 1033-1041. 
  8. Kolokotroni, M. and R. Giridharan(2008) Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy 82(11): 986-998.  https://doi.org/10.1016/j.solener.2008.05.004
  9. Kolokotroni, M., I. Giannitsaris and R. Watkins(2006) The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy 80(4): 383-392.  https://doi.org/10.1016/j.solener.2005.03.010
  10. Kwon, Y. S.(2015) Consideration for a Environment-Friendly City by Reducing the Urban Heat Effect. Daegu Gyeongbuk Development Institute Daegu. pp. 1-122. 
  11. Lee, S. M., I. Kwon and Y. J. Kim(2019) A study on the influence of urban environment on the generation of thermal diseases. The Journal of the Korea Contents Association 19(12): 84-92.  https://doi.org/10.5392/JKCA.2019.19.12.084
  12. Li, X. X. and L. K. Norford(2016) Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Climate 16: 59-74.  https://doi.org/10.1016/j.uclim.2015.12.002
  13. Lin, T. P., A. Matzarakis, R. L. Hwang and Y. C. Huang(2010) Effect of Pavements Albedo on Long-Term Outdoor Thermal Comfort. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universitat Freiburg 497. 
  14. Makaremi, N., E., Salleh, M. Z. Jaafar and A. GhaffarianHoseini(2012) Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Building and Environment 48: 7-14.  https://doi.org/10.1016/j.buildenv.2011.07.024
  15. Mirzaei, P. A. and F. Haghighat(2010) Approaches to study urban heat island-abilities and limitations. Building and Environment 45(10): 2192-2201.  https://doi.org/10.1016/j.buildenv.2010.04.001
  16. Monteiro, M. V., K. J. Doick, P. Handley and A. Peace(2016) The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban Forestry & Urban Greening 16: 160-169.  https://doi.org/10.1016/j.ufug.2016.02.008
  17. Oh, K. S. and J. J. Hong(2005) The relationship between urban spatial elements and the urban heat island effect. Urban Design Institute of Korea 6(1): 47-63. 
  18. Oke, T. R.(1973) City size and the urban heat island. Atmospheric Environment (1967) 7(8): 769-779.  https://doi.org/10.1016/0004-6981(73)90140-6
  19. Park, J. H. and G. H. Cho(2016) Examining the association between physical characteristics of green space and land surface temperature: A case study of Ulsan, Korea. Sustainability 8(8): 777.  https://doi.org/10.3390/su8080777
  20. Park, S., H. Y. Kong and H. Kang(2020) Comparison of differences on microclimatic factors and human thermal sensation between in situ measurement and computer modeling. Ecology and Resilient Infrastructure 7(1): 43-52.  https://doi.org/10.17820/eri.2020.7.1.043
  21. Saito, K., I. Said and M. Shinozaki(2017) Evidence-based neighborhood greening and concomitant improvement of urban heat environment in the context of a world heritage site-Malacca, Malaysia. Computers, Environment and Urban Systems 64: 356-372.  https://doi.org/10.1016/j.compenvurbsys.2017.04.003
  22. Santamouris, M.(2015) Regulating the damaged thermostat of the cities-Status, impacts and mitigation challenges. Energy and Buildings 91: 43-56.  https://doi.org/10.1016/j.enbuild.2015.01.027
  23. Sarrat, C., A. Lemonsu, V. Masson and D. Guedalia(2006) Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment 40(10): 1743-1758.  https://doi.org/10.1016/j.atmosenv.2005.11.037
  24. Shashua-Bar, L., D. Pearlmutter and E. Erell(2009) The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning 92(3-4): 179-186.  https://doi.org/10.1016/j.landurbplan.2009.04.005
  25. Shen, T., D. H. C. Chow and J. Darkwa(2013) Simulating the influence of microclimatic design on mitigating the urban heat island effect in the Hangzhou metropolitan area of China. International Journal of Low-Carbon Technologies 11(1): 130-139.  https://doi.org/10.1093/ijlct/ctt050
  26. Song, B. G. and K. H. Park(2015) An analysis of rational green area ratio by land use types for mitigating heat-island effects. Journal of the Korean Association of Geographic Information Studies 18(2): 59-74.  https://doi.org/10.11108/KAGIS.2015.18.2.059
  27. Taha, H.(1997) Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings 25(2): 99-103.  https://doi.org/10.1016/S0378-7788(96)00999-1
  28. Tseliou, A., I. Koletsis, K. Pantavou, E. Thoma, S. Lykoudis and I. X. Tsiros(2022) Evaluating the effects of different mitigation strategies on the warm thermal environment of an urban square in Athens, Greece. Urban Climate 44: 101217.  https://doi.org/10.1016/j.uclim.2022.101217
  29. Tsoka, S., A. Tsikaloudaki and T. Theodosiou(2018) Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications-A review. Sustainable Cities and Society 43: 55-76. https://doi.org/10.1016/j.scs.2018.08.009