• 제목/요약/키워드: decoupling capacitors

검색결과 43건 처리시간 0.025초

전력 무결성을 위한 온 칩 디커플링 커패시터 (On-chip Decoupling Capacitor for Power Integrity)

  • 조승범;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제24권3호
    • /
    • pp.1-6
    • /
    • 2017
  • As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.

전력 디커플링 기능을 가진 단상 계통연계 전압형 인버터 (Single Phase Grid Connected Voltage-ed Inverter Utilizing a Power Decoupling Function)

  • 이상욱;문상필;박한석
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.236-241
    • /
    • 2017
  • This paper presents a single-phase grid connected voltage-ed inverter with a power decoupling circuit. In the single-phase grid connected voltage-ed inverter, it is well known that a power pulsation with twice the grid frequency is contained in the input power. In a conventional voltage type inverter, electrolytic capacitors with large capacitance have been used in order to smooth the DC voltage. However, lifetime of those capacitors is shortened by the power pulsation with twice grid frequency. The authors have been studied a active power decoupling(APD) method that reduce the pulsating power on the input DC bus line, this enables to transfer the ripple energy appeared on the input DC capacitors into the energy in a small film capacitor on the additional circuit. Hence, extension of the lifetime of the inverter can be expected because the small film capacitor substitutes for the large electrolytic capacitors. Finally, simulation and experimental results are discussed.

PCB Power-Bus에 장하된, 결합제거 커패시터와 금속선의 상관관계적 영향 연구 (Correlated Effects of Decoupling Capacitors and Vias Loaded in the PCB Power-Bus)

  • 강승택
    • 한국전자파학회논문지
    • /
    • 제17권2호
    • /
    • pp.213-220
    • /
    • 2006
  • 본 논문은 결합제거용 커패시터가 금속선을 포함한 타 집중 소자들과 함께 장하될 경우 PCB power-bus에 미치는 영향을 살펴본다. 향상된 PCB EMC 대책을 준비하는 일환으로 장하된 PCB power-bus 다양한 경우에 대해 전자장과 임피던스가 엄밀하게 계산되고 결과 분석이 이뤄진다.

PCB power-bus에 장하된, 결합제거 커패시터와 금속선의 상관관계적 영향 연구 (Correlated effects of decoupling capacitors and vias loaded in the PCB power-bus)

  • 강승택
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.429-432
    • /
    • 2005
  • This paper investigates how the PCB power-bus structure's characteristics are influenced by the loading of decoupling capacitors that are placed close to vias, on purpose or not. It is worthwhile to see the correlated effects of the aforementioned lumped elements in that when they inevitably share one DC power-bus they will result in positive or negative changes in the PCB EMC design. The EM fields and impedance profiles are rigously calculated on the PCB power-bus cases loaded with the above components and their effects will be given to bring better PCB EMC countermeasures.

  • PDF

New Control Method for Power Decoupling of Electrolytic Capacitor-less Photovoltaic Micro-Inverter with Primary Side Regulation

  • Irfan, Mohammad Sameer;Shin, Jong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.677-687
    • /
    • 2018
  • This paper presents a novel power decoupling control scheme with the bidirectional buck-boost converter for primary-side regulation photovoltaic (PV) micro-inverter. With the proposed power decoupling control scheme, small-capacitance film capacitors are used to overcome the life-span and reliability limitations of the large-capacitance electrolytic capacitors. Then, an improved flyback PV inverter is employed in continuous conduction mode with primary-side regulation for the PV power conditioning. The proposed power-decoupling controller shares the reference for primary side current regulation of the flyback PV inverter. The decoupling controller shapes the input current of the bidirectional buck-boost converter. The shared reference eliminates the phase-delay between the input current to the bidirectional buck-boost converter and the double frequency current at the PV primary current. The elimination of the phase-delay in dynamic response enhances the ripple rejection capability of the power decoupling buck-boost converter even with small film capacitor. With proposed power decoupling control scheme, the additional advantage of the primary-side regulation of flyback PV inverter is that there is no need to have an extra current sensor for obtaining the ripplecurrent reference of the decoupling current-controller of the power-decoupling buck-boost converter. Therefore, the proposed power decoupling control scheme is cost-effective as well as the size benefit. A new transient analysis is carried out which includes the source voltage dynamics instead of considering the source voltage as a pure voltage source. For verification of the proposed control scheme, simulation and experimental results are presented.

광대역 디커플링 캐패시터 모델을 이용한 정확한 SSN 분석 (Accurate SSN Analysis using Wideband Decoupling Capacitor Model)

  • 손경주;권덕규;이해영;최철승;변정건
    • 한국전자파학회논문지
    • /
    • 제12권7호
    • /
    • pp.1048-1056
    • /
    • 2001
  • 고속 다층 인쇄 회로 기판의 전원 평면과 접지 평면을 통해 전파되는 SSN 잡음의 영향을 감소시키기 위하여 일반적으로 디커플링 캐패시터를 사용한다. 본 논문에서는 디커플링 캐패시터에 대한 간단한 고주파 측정 방법 을 제시하고 고주파 기생 성분들을 고려한 광대역 (50 MHz ~3 GHz) 등가 회로 모델을 제안하였다. 제안된 모델은 SSN의 영향을 분석하기 위한 전원 평면과 접지 평면의 SPICE 모델과 쉽게 결합할 수 있다. 제안된 모델이 연결된 회로 해석 결과는 측정 결과와 잘 일치하며, 제안된 모델을 이용한 회로 해석을 통해 디커플링 캐패시터 값에 따른 잡음 감소 효과를 빠르고 정확하게 분석할 수 있음을 확인하였다.

  • PDF

고속 고밀도 디지털 회로에서 사용되는 디커플링 캐패시터의 고주파 모델링과 영향 (High-Frequency Modeling and the Influence of Decoupling Capacitors in High-Speed Digital Circuits)

  • 손경주;김진양;이해영;최철승;변정건
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 추계 기술심포지움 논문집
    • /
    • pp.23-27
    • /
    • 2000
  • Simultaneous Switching Noise (SSN) propagated through parallel power and ground planes in high-speed multilayer printed circuit boards (PCBs) causes malfunction of both digital and analog circuits. To reduce SSN, decoupling capacitors are generally used in the PCBs. In this paper, we improve the equivalent circuit model of decoupling capacitor in high-frequency range to analyze the effect of SSN reduction accurately. The analysis is performed by the microwave and RF design system (MDS) method and the finite difference time domain (FDTD) method. We compared the results by the ideal capacitor model with those by the proposed model.

  • PDF

Multilayer Power Delivery Network Design for Reduction of EMI and SSN in High-Speed Microprocessor System

  • Park, Seong-Geun;Kim, Ji-Seong;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • 제2권2호
    • /
    • pp.68-74
    • /
    • 2002
  • In this paper, a pre-layout design approach for high-speed microprocessor is proposed. For multilayer PCB stark up configuration as well as selection and placement of decoupling capacitors, an effective solution for reducing SSN and EMI is obtained by modeling and simulation of complete power distribution system. The system model includes VRM, decoupling capacitors, multiple power and ground planes for core voltage, vias, as well as microprocessor. Finally, the simulation results are verified by measurements data.

Single-Phase Transformerless PV Power Conditioning Systems with Low Leakage Current and Active Power Decoupling Capability

  • Nguyen, Hoang Vu;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.997-1006
    • /
    • 2018
  • This paper proposes a transformerless photovoltaic (PV) power converter system based on the DC/AC boost inverter, which can solve the leakage current and second-order ripple power issues in single-phase grid-connected PV inverters. In the proposed topology, the leakage current can be decreased remarkably since most of the common-mode currents flow through the output capacitor, by-passing parasitic capacitors, and grounding resistors. In addition, the inherent ripple power component in the single-phase grid inverter can be suppressed without adding any extra components. Therefore, bulky electrolytic capacitors can be replaced by small film capacitors. The effectiveness of the proposed topology has been verified by simulation and experimental results for a 1-kW PV PCS.

A Study on PV AC-Module with Active Power Decoupling and Energy Storage System

  • Won, Dong-Jo;Noh, Yong-Su;Lim, Hong-Woo;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1894-1903
    • /
    • 2016
  • In general, electrolytic capacitors are used to reduce power pulsations on PV-panels. However, this can reduce the reliability of the PV AC-module system, because electrolytic capacitors have a shorter lifetime than PV-panels. In addition, PV-panels generate irregular power and inject it into the grid because the output power of a PV-panel depends on the surrounding conditions such as irradiation and temperature. To solve these problems, a grid-connected photovoltaic (PV) AC-module with active power decoupling and energy storage is proposed. A parallel bi-directional converter is connected to the AC module to reduce the output power pulsations of PV-panels. Thus, the electrolytic capacitor can be replaced with a film capacitor. In addition, the irregular output power due to the surrounding conditions can be regulated by using a parallel energy storage circuit. To maintain the discontinuous conduction mode at low irradiation, the frequency control method is adopted. The design method of the proposed converter and the operation principles are introduced. An experimental prototype rated at 125W was built to verify the performance of the proposed converter.