• Title/Summary/Keyword: decision algorithm

Search Result 2,348, Processing Time 0.027 seconds

An Effective Mode Decision Algorithm in H.264/AVC Encoder (H.264/AVC 부호화기에 대한 효과적인 모드 결정 알고리즘)

  • Moon Jeong-Mee;Kim Jae-Ho;Moon Yong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.250-257
    • /
    • 2006
  • In this paper, we propose an efficient algorithm for the RDO mode decision in H.264/AVC encoder. Based on the properties of DCT coefficients and the RDO mode decision processing, we derive a new condition for detecting an error block having all-zero DCT coefficient (AZCB). (I)DCT, (I)Q, and entropy coding are skipped for AZCBs in the proposed algorithm. It makes the reduction of the computational complexity for the RDO mode decision. Simulation results show that the proposed algorithm achieves computational saving over 40% compared to the conventional method.

A BLMS Adaptive Receiver for Direct-Sequence Code Division Multiple Access Systems

  • Hamouda Walaa;McLane Peter J.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.243-247
    • /
    • 2005
  • We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to­noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feed­back block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs ($SNR\;\geq\;9\;dB$).

Reliability-Based Iterative Proportionality-logic Decoding of LDPC Codes with Adaptive Decision

  • Sun, Youming;Chen, Haiqiang;Li, Xiangcheng;Luo, Lingshan;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • In this paper, we present a reliability-based iterative proportionality-logic decoding algorithm for two classes of structured low-density parity-check (LDPC) codes. The main contributions of this paper include: 1) Syndrome messages instead of extrinsic messages are processed and exchanged between variable nodes and check nodes, which can reduce the decoding complexity; 2) a more flexible decision mechanism is developed in which the decision threshold can be self-adjusted during the iterative process. Such decision mechanism is particularly effective for decoding the majority-logic decodable codes; 3) only part of the variable nodes satisfying the pre-designed criterion are involved for the presented algorithm, which is in the proportionality-logic sense and can further reduce the computational complexity. Simulation results show that, when combined with factor correction techniques and appropriate proportionality parameter, the presented algorithm performs well and can achieve fast decoding convergence rate while maintaining relative low decoding complexity, especially for small quantized levels (3-4 bits). The presented algorithm provides a candidate for those application scenarios where the memory load and the energy consumption are extremely constrained.

Adaptive blind decision feedback equalization using constant modulus and prediction algorithm (CMA와 예측 알고리듬을 이용한 판정궤환 적응 자력등화 기법)

  • 서보석;이재설;이충웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.996-1007
    • /
    • 1996
  • In this paper, a blind adaptation method for a decision feedback equalizer (DFE) is proposed to deal with nominimum phase channels. This equalizer is composed of a linear transversal filter and a prediction error filter which are trained separately using constant modulus and decision feedback prediction algorithms, respectively, during the learnign time. The proposed algorithm guaranetees the DFE to converge to a suboptimal point on the condition that a linear transversal of the proposed scheme is illustrated and the performance is compared with conventional blind equlization algorithms.

  • PDF

Design and Implementation of Sensor Network based Autonomous Vehicle Control System (센서 네트워크 기반 자율주행 자동차 제어 시스템 설계 및 구현)

  • Jang, Won-Chul;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.247-253
    • /
    • 2012
  • This paper presents sensor network based autonomous vehicle system using a proposed image processing algorithm. The proposed image processing algorithm consists of pre-processing and five-stage image processing: coordinate calculation, driving area decision, line segment calculation, steeling decision, and acceleration decision. We evaluate the performance of the proposed algorithm on both straight road and curved road. Experimental results indicate that the proposed algorithm works well for autonomous vehicles. However, control accuracy of the proposed algorithm decreases as speed is increasing.

Fast Intra Mode Decision Algorithm for Depth Map Coding using Texture Information in 3D-AVC (3D-AVC에서 색상 영상 정보를 이용한 깊이 영상의 빠른 화면 내 예측 모드 결정 기법)

  • Kang, Jinmi;Chung, Kidong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.149-157
    • /
    • 2015
  • The 3D-AVC standard aims at improving coding efficiency by applying new techniques for utilizing intra, inter and view predictions. 3D video scenes are rendered with existing texture video and additional depth map. The depth map comes at the expense of increased computational complexity of the encoding process. For real-time applications, reducing the complexity of 3D-AVC is very important. In this paper, we present a fast intra mode decision algorithm to reduce the complexity burden in the 3D video system. The proposed algorithm uses similarity between texture video and depth map. The best intra prediction mode of the depth map is similar to that of the corresponding texture video. The early decision algorithm can be made on the intra prediction of depth map coding by using the coded intra mode of texture video. Adaptive threshold for early termination is also proposed. Experimental results show that the proposed algorithm saves the encoding time on average 29.7% without any significant loss in terms of the bit rate or PSNR value.

Approximated Soft-Decision Demapping Algorithm for Coded 4+12+16 APSK (부호화된 4+12+16 APSK를 위한 근사화된 연판정 디매핑 알고리즘)

  • Lee, Jaeyoon;Jang, Yeonsoo;Yoon, Dongweon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.738-745
    • /
    • 2012
  • This paper proposes an approximated soft decision demapping algorithm with low computational complexity for coded 4+12+16 amplitude phase shift keying (APSK) in an additive white Gaussian noise (AWGN) channel. To derive the proposed algorithm, we approximate the decision boundaries for 4+12+16 APSK symbols, and then decide the log likelihood ratio (LLR) value for each bit from the approximated decision boundaries. Although the proposed algorithm shows about 0.6~1.1dB degradation on the error performance compared with the conventional max-log algorithm, it gives a significant result in terms of the computational complexity.

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

Computation Controllable Mode Decision and Motion Estimation for Scalable Video Coding

  • Zheng, Liang-Wei;Li, Gwo-Long;Chen, Mei-Juan;Yeh, Chia-Hung;Tai, Kuang-Han;Wu, Jian-Sheng
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.469-479
    • /
    • 2013
  • This paper proposes an efficient computation-aware mode decision and search point (SP) allocation algorithm for spatial and quality scalabilities in Scalable Video Coding. In our proposal, a linear model is derived to allocate the computation for macroblocks in enhancement layers by using the rate distortion costs of the base layer. In addition, an adaptive SP decision algorithm is proposed to decide the number of SPs for motion estimation under the constraint of the allocated computation. Experiment results demonstrate that the proposed algorithm allocates the computation resource efficiently and outperforms other works in rate distortion performance under the same computational availability constraint.

Intelligent Fault Diagnosis System Using Hybrid Data Mining (하이브리드 데이터마이닝을 이용한 지능형 이상 진단 시스템)

  • Baek, Jun-Geol;Heo, Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.960-968
    • /
    • 2005
  • The high cost in maintaining complex manufacturing process makes it necessary to enhance an efficient maintenance system. For the effective maintenance of manufacturing process, precise fault diagnosis should be performed and an appropriate maintenance action should be executed. This paper suggests an intelligent fault diagnosis system using hybrid data mining. In this system, the rules for the fault diagnosis are generated by hybrid decision tree/genetic algorithm and the most effective maintenance action is selected by decision network and AHP. To verify the proposed intelligent fault diagnosis system, we compared the accuracy of the hybrid decision tree/genetic algorithm with one of the general decision tree learning algorithm(C4.5) by data collected from a coil-spring manufacturing process.

  • PDF