• 제목/요약/키워드: dechlorination

검색결과 175건 처리시간 0.025초

Effects of Sulfate Concentration on the Anaerobic Dechlorination of Polychlorinated Biphenyls in Estuarine Sediments

  • Cho Young Cheol;Oh Kyoung Hee
    • Journal of Microbiology
    • /
    • 제43권2호
    • /
    • pp.166-171
    • /
    • 2005
  • In order to determine the effects of sulfate concentration on the anaerobic dechlorination of polychlorinated biphenyls, sediments spiked with Aroclor 1242 were made into slurries using media which had various sulfate concentrations ranging from 3 to 23 mM. The time course of dechlorination clearly demonstrated that dechlorination was inhibited at high concentration of sulfate due to less dechlori-nation of meta-substituted congeners. When the dechlorination patterns were analyzed by the calculation of Euclidean distance, the dechlorination pathway in the 3 mM sulfate samples was found to be different from that observed in the 13 mM samples, although the extent of dechlorination in these two samples was similar. It is possible that the dechlorination in the high sulfate concentration samples is inhibited by the suppression of growth of methanogen, which have been shown to be meta-dechlorinating microorganisms.

Reductive Dechlorination of Low Concentration Polychlorinated Biphenyls as Affected by a Rhamnolipid Biosurfactant

  • Kim, Jong-Seol;Frohnhoefer, Robert C.;Cho, Young-Cheol;Cho, Du-Wan;Rhee, G-Yull
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권9호
    • /
    • pp.1564-1571
    • /
    • 2008
  • We investigated whether the threshold concentration for polychlorinated biphenyl (PCB) dechlorination may be lower in biosurfactant-amended sediments compared with biosurfactant-free samples. At PCB concentrations of 40, 60, and 120 ppm, the surfactant amendment enhanced the PCB dechlorination rate at all concentrations and the rate was also faster at higher concentrations. On a congener group basis, dechlorination proceeded largely with group A (congeners with low threshold) in both surfactant-free and -amended sediments, accumulating mainly group C (residual products of dechlorination) congeners, and surfactant enhanced the dechlorination rate of group A congeners. Since the PCB threshold concentration for the inoculum in the experiment was lower than 40 ppm, we carried out another experiment using sediments with lower PCB concentrations, 10, 20, and 30 ppm. Sediments with 100 ppm were also performed to measure dechlorination at a PCB saturation concentration. Comparison between the plateaus exhibited that the extent of dechlorination below 40 ppm PCBs was much lower than that at a saturation concentration of 100 ppm. There was no significant difference in the extent of dechlorination between surfactant-free and -amended sediments. Moreover, surfactant did not change the congener specificity or broaden the congener spectrum for dechlorination at PCB concentrations below 40 ppm. Taken together, it seems that at a given PCB concentration, dechlorination characteristics of dechlorinating populations may be determined by not only the congener specificity of the microorganisms but also the affinity of dechlorinating enzyme(s) to individual PCB congeners.

Dechlorination of Individual Congeners in Aroclor 1248 as Enhanced by Chlorobenzoates, Chlorophenols, and Chlorobenzenes

  • Kim, Jong-Seol;Cho, Young-Cheol;Frohnhoefer, Robert C.;Rhee, G-Yull
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권10호
    • /
    • pp.1701-1708
    • /
    • 2008
  • Previous investigations showed that three classes of haloaromatic compounds (HACs; chlorobenzoates, chlorophenols, and chlorobenzenes) enhanced the reductive dechlorination of Aroclor 1248, judging from the overall extent of reduction in CI atoms on the biphenyl. In the present study, we further investigated the kind of polychlorinated biphenyl (PCB) congeners involved in the enhanced dechlorination by four isomers belonging to each class (2,3-, 2,5-, 2,3,5-, and 2,4,6-chlorobenzoates; 2,3-, 3,4-, 2,5-, and 2,3,6-chlorophenols; and 1,2-, 1,2,3-, 1,2,4-, and penta-chlorobenzenes). Although the PCB congeners involved in the enhanced dechlorination varied with the HACs, the enhancement primarily involved para-dechlorination of the same congeners (2,3,4'-, 2,3,4,2'-plus 2,3,6,4'-, 2,5,3',4'- plus 2,4,5,2',6'-, and 2,3,6,2',4'-chlorobiphenyls), regardless of the HACs. These congeners are known to have low threshold concentrations for dechlorination. To a lesser extent, the enhancement also involved meta dechlorination of certain congeners with high threshold concentrations. There was no or less accumulation of 2,4,4'- and 2,5,4'-chlorobiphenyls as final products under HAC amendment. Although the dechlorination products varied, the accumulation of ortho-substituted congeners, 2-, 2,2'-, and 2,6-chlorobiphenyls, was significantly higher with the HACs, indicating a more complete dechlorination of the highly chlorinated congeners. Therefore, the present results suggest that the enhanced dechlorination under HAC enrichment is carried out through multiple pathways, some of which may be universal, regardless of the kind of HACs, whereas others may be HAC-specific.

Dechlorination of 4-Chlorobenzoate by Pseudomonas sp. DJ-12

  • Chae, Jong-Chan;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • 제35권4호
    • /
    • pp.290-294
    • /
    • 1997
  • 4-Chlorobiphenyl-degrading Pseudomonas sp. DJ-12 was able to degrade 4-chlorobenzoate(4CBA), 4-iodobenzoate, and 4-bromobenzoate completely under aerobic conditions. During. the degradation of 4CBA by Pseudomonas sp. DJ-12, chloride ions were released by dechlorination and 4-hydroxybenzoate was produced as an intermediate metabolite. The NotI-KNA fragments of pKC157 containing dechlorination genes hybridized with the gene encoding 4CBA:CoA dehalogenase of Pseudomonas sp. CBS3 which is responsible for the hydrolytic dechlorination of 4CBA. These results imply that Pseudomonas sp. DJ-12 degrades 4CBA to 40hydroxybenzoate via dechlorination as the initial step of its degradativ pathway. The genes responsible for dechlorination of 4CBA were found to be blcated on the chromosomal DNA of Pseudomonas sp. DJ-12.

  • PDF

Electrochemical Dechlorination of 1,2,4-Trichlorobenzene Using a Reticulated Vitreous Carbon Electrode

  • Paeng, Ki-Jung;Lim, Chae-Yun;Lee, Bo-Young;Myung, No-Seung;Rhee Paeng, In-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1329-1332
    • /
    • 2003
  • Stepwise dechlorination of 1,2,4-trichlorobenzene was observed at a glassy carbon electrode in dimethylformamide containing 0.1 M tetraethylammonium perchlorate. Especially, dechlorination to dichlorobenzene and further to monochlorobenzene or benzene was successfully demonstrated with a porous reticulated vitreous carbon electrode. Electrochemical dechlorination of polychlorobenzenes employing a flow cell with a reticulated vitreous carbon working electrode is also described. Preliminary experiments with a flow cell showed that dechlorination of trichlorobenzene to dichlorobenzene was partially completed while dechlorination to benzene or monochlorobenzene was not successful, suggesting that a flow rate and electrolysis time should be further optimized for the complete electrolysis.

Reductive Dechlorination of Polychlorinated Biphenyls as Affected by Natural Halogenated Aromatic Compounds

  • Kim Jongseol;Lee Ahmi;Moon Yong-Suk;So Jae-Seong;Koh Sung-Cheol
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.23-28
    • /
    • 2006
  • We investigated the effects of halogenated aromatic compounds (HACs) including naturally occurring ones (L-thyroxine, 3-chloro-L-tyrosine, 5-chloroindole, 2-chlorophenol, 4-chlorophenol and chlorobenzene) on polychlorinated biphenyl (PCB) dechlorination in sediment cultures. A PCB-dechlorinating enrichment culture of sediment microorganisms from the St. Lawrence River was used as an initial inoculum. When the culture was inoculated into Aroclor 1248 sediments amended with each of the six HACs, the extent of dechlorination was not enhanced by amendment with HACs. The dechlorination patterns in the HAC-amended sediments were nearly identical to that of the HAC-free sediments except the 3-chloro-L-tyrosine-amended ones where no dechlorination activity was observed. When these sediment cultures were transferred into fresh sediments with the same HACs, the dechlorination specificities remained the same as those of the initial inoculations. Thus, in the present study, the substrate range of the highly selected enrichment culture could not be broadened by the HACs. It appears that HACs affect PCB dechlorination mainly through population selection rather than enzyme induction of single population.

Microsized Corn-Oil Droplet (MOD)의 Trichloroethylene (TCE) 생물학적 탈염소화 분해 자연저감 완효성 촉진제 적용성 평가 (Feasibility of Natural Attenuation for TCE Anaerobic Reductive Dechlorination Using Microsized Corn-Oil Droplet as an Activator)

  • 한경진;김희윤;권수열;김영
    • 한국물환경학회지
    • /
    • 제40권1호
    • /
    • pp.11-18
    • /
    • 2024
  • Recently, enhanced in situ bioremediation using slow substrate release techniques has been actively researched for managing TCE-contaminated groundwater. This study conducted a lab-scale batch reactor experiment to evaluate the feasibility of natural attenuation for TCE dechlorination using microsized corn-oil droplet (MOD) as an activator considering the following three factors: 1) TCE dechlorination in the presence or absence of MOD; 2) TCE dechlorination in the presence or absence of inactivator of native microbial activity; and 3) MOD concentration effects on TCE dechlorination. Batch reactors were constructed using site groundwater and soil in which Dehalococcoides bacteria were present. Without MOD, TCE was decomposed into dichloroethylene (DCE). However, other by-products of TCE dechlorination were not detected. With MOD, DCE, vinyl chloride (VC), and ethylene (ETH) were sequentially observed. This result confirmed that MOD effectively supplied electrons to complete dechlorination of TCE to ETH. However, when an excess of MOD was provided, it formed unfavorable conditions for anaerobic digestion because dechlorination reaction did not proceed while propionic acid was accumulated after DCE was generated. Therefore, if an appropriate amount of MOD is supplied, MOD can be effectively used as a natural reduction activator to promote biodegradation in an aquifer contaminated by TCE.

Effect of Moisture Content on Reductive Dechlorination of Polychlorinated Biphenyls and Population Dynamics of Dechlorinating Microorganisms

  • Kwon, O-Seob;Kim, Young-Eui;Park, Jong-Gyu
    • Journal of Microbiology
    • /
    • 제39권3호
    • /
    • pp.195-201
    • /
    • 2001
  • The effect of moisture content an the reductive dechlorination of polychlorinated biphenyls and population dynamics of dechlorinating microorganisms was investigated in sediments spiked with Aroclor 1248. In sediment slurry with an overlying water layer, dechlorination ensued after a 4-week lag period and reduced the average number of chlorines per biphenyl from 3.91 to 3.15 after 48 weeks. In the sediments of reduced moisture content, however, dechlorination occurred after a lag period of 12 weeks and decreased the average number of chlorines per biphenyl to only 3.62, and the dechlorination rate was also slower. When the population size of dechlorinators, methanogens, and sulfate-reducing bacteria was determined by the most probable number techniques, however, no difference was found between the slurry and the low-moisture sediments, except for methanogens. The growth of dechlorinating populations coincided with the end of the lag period and they then increased by 3 orders of magnitude in two conditions. Specific growth rate of dechlorinators showed little difference between the slurry and the low-moisture sediments; however, growth yield was high in the sediments of reduced moisture content. The reduction of sediment moisture decreased the dechlorination rate and extent of PCBs but did not inhibit the growth of PCB dechlorinators.

  • PDF

Hydrolytic Dechlorination of 4-Chlorobenzoate Specified by fcbABC of Pseudomonas sp. DJ -12

  • Chae, Jong-Chan;Ahn, Kyung-Joon;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.692-695
    • /
    • 1998
  • Pseudomonas sp. DJ-12 was able to degrade 4-chlorobenzoate by hydrolytic dechlorination to produce 4-hydroxybenzoate and chloride ion. The fcbABC genes responsible for the hydrolytic dechlorination were cloned from the chromosomal DNA of the organism. The genes were found to be organized in the order fcbB-fcbA-fcbC, but there was an intergenic space between the fcbA and fcbC genes.

  • PDF

벤조산염을 전자공여체로 이용한 PCE의 환원성 탈염소화 특성 (Characteristics of PCE Reductive Dechlorination using Benzoate as an Electron Donor)

  • 이일수;배재호
    • 대한환경공학회지
    • /
    • 제28권3호
    • /
    • pp.292-299
    • /
    • 2006
  • 전자공여체로 벤조산염을 이용한 perchloroethene(PCE)의 환원성 탈염소화 과정에서 전자공여체의 첨가량 및 초기 미생물 식종량이 탈염소화에 미치는 영향을 평가하기 위하여 회분식 실험을 수행하였다. 벤조산염이 탈염소화를 위한 양론비 이하(전자공여체/수용체 비=0.5와 1)로 첨가된 경우 탈염소화 효율은 벤조산염 첨가량이 증가함에 따라 71%에서 94.3%로 증가하였으나, 탈염소화에 이용된 전자공여체의 분율은 92.7%에서 79.6%로 감소하였다. 메탄생성은 PCE와 trichloroethene(TCE)가 모두 cis-1,2-dichloroethene(cDCE)으로 전환된 후 문턱농도(threshold value, 10 nM) 이상으로 수소농도가 유지되는 동안 진행되었다. 벤조산염이 양론비 이상으로 첨가된 경우 탈염소화 완료 후 잔존하는 수소는 메탄생성량을 증가시켰다. 식종 미생물량의 증가는 지체기를 감소시켰지만 최대 탈염소화 속도는 벤조산염 분해 속도에 의해 결정되어 식종 미생물량에 큰 영향을 받지 않았다. 식종 미생물 농도가 높은 경우 초기 활발한 탈염소화로 인하여 메탄생성량은 감소하고, 탈염소화 효율은 증가하였다.