Dechlorination of Individual Congeners in Aroclor 1248 as Enhanced by Chlorobenzoates, Chlorophenols, and Chlorobenzenes

  • Published : 2008.10.31

Abstract

Previous investigations showed that three classes of haloaromatic compounds (HACs; chlorobenzoates, chlorophenols, and chlorobenzenes) enhanced the reductive dechlorination of Aroclor 1248, judging from the overall extent of reduction in CI atoms on the biphenyl. In the present study, we further investigated the kind of polychlorinated biphenyl (PCB) congeners involved in the enhanced dechlorination by four isomers belonging to each class (2,3-, 2,5-, 2,3,5-, and 2,4,6-chlorobenzoates; 2,3-, 3,4-, 2,5-, and 2,3,6-chlorophenols; and 1,2-, 1,2,3-, 1,2,4-, and penta-chlorobenzenes). Although the PCB congeners involved in the enhanced dechlorination varied with the HACs, the enhancement primarily involved para-dechlorination of the same congeners (2,3,4'-, 2,3,4,2'-plus 2,3,6,4'-, 2,5,3',4'- plus 2,4,5,2',6'-, and 2,3,6,2',4'-chlorobiphenyls), regardless of the HACs. These congeners are known to have low threshold concentrations for dechlorination. To a lesser extent, the enhancement also involved meta dechlorination of certain congeners with high threshold concentrations. There was no or less accumulation of 2,4,4'- and 2,5,4'-chlorobiphenyls as final products under HAC amendment. Although the dechlorination products varied, the accumulation of ortho-substituted congeners, 2-, 2,2'-, and 2,6-chlorobiphenyls, was significantly higher with the HACs, indicating a more complete dechlorination of the highly chlorinated congeners. Therefore, the present results suggest that the enhanced dechlorination under HAC enrichment is carried out through multiple pathways, some of which may be universal, regardless of the kind of HACs, whereas others may be HAC-specific.

Keywords

References

  1. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43: 260-296
  2. Chang, B. V., S. W. Chou, and S. Y. Yuan. 1999. Dechlorination of polychlorinated biphenyls by an anaerobic mixed culture. J. Environ. Sci. Health A 34: 1299-1316 https://doi.org/10.1080/10934529909376897
  3. Cho, Y.-C., E. B. Ostrofsky, R. C. Sokol, R. C. Frohnhoefer, and G.-Y. Rhee. 2002. Enhancement of microbial PCB dechlorination by chlorobenzoates, chlorophenols and chlorobenzenes. FEMS Microbiol. Ecol. 42: 51-58 https://doi.org/10.1111/j.1574-6941.2002.tb00994.x
  4. Cho, Y.-C., R. C. Sokol, R. C. Frohnhoefer, and G.-Y. Rhee. 2003. Reductive dechlorination of polychlorinated biphenyls: Threshold concentration and dechlorination kinetics of individual congeners in Aroclor 1248. Environ. Sci. Technol. 37: 5651-5656 https://doi.org/10.1021/es034600k
  5. Erickson, M. D. 1997. Analytical Chemistry of PCBs, pp. 17-96. 2nd Ed. CRC Press, Boca Raton, Florida
  6. Fennell, D. E., I. Nijenhuis, S. F. Wilson, S. H. Zinder, and M. M. Häggblom. 2004. Dehalococcoides ethenogenes strain reductively dechlorinates diverse chlorinated aromatic pollutants. Environ. Sci. Technol. 38: 2075-2081 https://doi.org/10.1021/es034989b
  7. Frame, G. M., J. W. Cochran, and S. S. Bowadt. 1996. Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. J. High Resolut. Chromatogr. 19: 657-668 https://doi.org/10.1002/jhrc.1240191202
  8. Gye, M.-C., S. Ohsako, and H.-J. Lee. 2003. Assessment of reproductive health risk of polychlorinated biphenyls by monitoring the expression of claudins and transepithelial electrical resistance in mouse Sertoli cells. J. Microbiol. Biotechnol. 13: 495-500
  9. Kim, J. and G.-Y. Rhee. 1997. Population dynamics of polychlorinated biphenyl-dechlorinating microorganisms in contaminated sediments. Appl. Environ. Microbiol. 63: 1771-1776
  10. Middeldorp, P. J. M., J. de Wolf, A. J. B. Zehnder, and G. Schraa. 1997. Enrichment and properties of a 1,2,4-trichlorobenzene-dechlorinating methanogenic microbial consortium. Appl. Environ. Microbiol. 63: 1225-1229
  11. Oh, E. T., S.-C. Koh, E. Kim, Y.-H. Ahn, and J.-S. So. 2003. Plant terpenes enhance survivability of polychlorinated biphenyl (PCB) degrading Pseudomonas pseudoalcaligenes KF707 labeled with gfp in microcosms contaminated with PCB. J. Microbiol. Biotechnol. 13: 463-468
  12. Park, Y.-I., J.-S. So, and S.-C. Koh. 1999. Induction by carvone of the polychlorinated biphenyl (PCB)-degradative pathway in Alcaligenes eutrophus H850 and its molecular monitoring. J. Microbiol. Biotechnol. 9: 804-810
  13. Rhee, G.-Y., R. C. Sokol, C. M. Bethoney, Y.-C. Cho, R. C. Frohnhoefer, and T. Erkkila. 2001. Kinetics of polychlorinated biphenyl dechlorination and growth of dechlorinating microorganisms. Environ. Toxicol. Chem. 20: 721-726
  14. Sokol, R. C., O.-S. Kwon, C. M. Bethoney, and G.-Y. Rhee. 1994. Reductive dechlorination of polychlorinated biphenyls (PCBs) in St. Lawrence River sediments and variations in dechlorination characteristics. Environ. Sci. Technol. 28: 2054-2064 https://doi.org/10.1021/es00061a013
  15. Van de Pas, B. A., J. Gerritse, W. M. de Vos, G. Schraa, and A. J. M. Stams. 2001. Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. Arch. Microbiol. 176: 165-169 https://doi.org/10.1007/s002030100316
  16. Wu, Q. Z., C. E. Milliken, G. P. Meier, J. E. M. Watts, K. R. Sowers, and H. D. May. 2002. Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environ. Sci. Technol. 36: 3290-3294 https://doi.org/10.1021/es0158612