Reductive Dechlorination of Polychlorinated Biphenyls as Affected by Natural Halogenated Aromatic Compounds

  • Kim Jongseol (Division of Biological Sciences, University of Ulsan) ;
  • Lee Ahmi (Division of Biological Sciences, University of Ulsan) ;
  • Moon Yong-Suk (Division of Biological Sciences, University of Ulsan) ;
  • So Jae-Seong (Department of Biological Engineering, Inha University) ;
  • Koh Sung-Cheol (Division of Civil and Environmental Systems Engineering, Korea Maritime University)
  • Published : 2006.02.01

Abstract

We investigated the effects of halogenated aromatic compounds (HACs) including naturally occurring ones (L-thyroxine, 3-chloro-L-tyrosine, 5-chloroindole, 2-chlorophenol, 4-chlorophenol and chlorobenzene) on polychlorinated biphenyl (PCB) dechlorination in sediment cultures. A PCB-dechlorinating enrichment culture of sediment microorganisms from the St. Lawrence River was used as an initial inoculum. When the culture was inoculated into Aroclor 1248 sediments amended with each of the six HACs, the extent of dechlorination was not enhanced by amendment with HACs. The dechlorination patterns in the HAC-amended sediments were nearly identical to that of the HAC-free sediments except the 3-chloro-L-tyrosine-amended ones where no dechlorination activity was observed. When these sediment cultures were transferred into fresh sediments with the same HACs, the dechlorination specificities remained the same as those of the initial inoculations. Thus, in the present study, the substrate range of the highly selected enrichment culture could not be broadened by the HACs. It appears that HACs affect PCB dechlorination mainly through population selection rather than enzyme induction of single population.

Keywords

References

  1. Adrian, L., U. Szewzyk, J. Wecke, and H. Görisch. 2000. Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580-583 https://doi.org/10.1038/35046063
  2. Bach, Q.-D., S.-J. Kim, S.-C. Choi, and Y.-S. Oh. 2005. Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents. J. Microbiol. 43, 319-324
  3. Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese, and R.S. Wolfe. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296
  4. Bedard, D. L. 2003. Polychlorinated biphenyls in aquatic sediments: Environmental fate and outlook for biological treatment, p. 443-465. In M.M Haggblom and I.D. Bossert (eds.), Dehalogenation: Microbial processes and environmental applications. Kluwer Academic, Boston, Massachusetts
  5. Bedard, D.L., H.M. Van Dort, and K.A. DeWeerd. 1998. Brominated biphenyls prime extensive microbial reductive dehalogenation of Aroclor 1260 in Housatonic River sediment. Appl. Environ. Microbiol. 64, 1786-1795
  6. Bedard, D.L., H.M. Van Dort, R.J. May, and L.A. Smullen. 1997. Enrichment of microorganisms that sequentially meta, para-dechlorinate the residue of Aroclor 1260 in Housatonic River sediment. Environ. Sci. Technol. 31, 3308-3313 https://doi.org/10.1021/es9703483
  7. Brown, J.F.Jr., R.E. Wagner, H. Feng, D.L. Bedard, M.J. Brennan, J.C. Carnahan, and J.C. May. 1987. Environmental dechlorination of PCBs. Environ. Toxicol. Chem. 6, 579-593 https://doi.org/10.1897/1552-8618(1987)6[579:EDOP]2.0.CO;2
  8. Chang, B.V., S.W. Chou, and S.Y. Yuan. 1999. Dechlorination of polychlorinated biphenyls by an anaerobic mixed culture. J. Environ. Sci. Health Part A. 34, 1299-1316 https://doi.org/10.1080/10934529909376897
  9. Cho, Y.-C. and K.-H. Oh. 2005. Effects of sulfate concentration on the anaerobic dechlorination of polychlorinated biphenyls in estuarine sediments. J. Microbiol. 43, 166-171
  10. Cho, Y.-C., R.C. Frohnhoefer, and G-Y. Rhee. 2003. Reductive dechlorination of polychlorinated biphenyls: Threshold concentration and dechlorination kinetics of individual congeners in Aroclor 1248. Environ. Sci. Technol. 37, 5651-5656 https://doi.org/10.1021/es034600k
  11. Cho, Y.-C., E.B. Ostrofsky, R.C. Sokol, R.C. Frohnhoefer, and G-Y. Rhee. 2002. Enhancement of microbial PCB dechlorination by chlorobenzoates, chlorophenols and benznenes. FEMS Microbiol. Ecol. 42, 51-58 https://doi.org/10.1111/j.1574-6941.2002.tb00994.x
  12. Cole, J.R., A.L. Cascarelli, W.W. Mohn, and J.M. Tiedje. 1994. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl. Environ. Microbiol. 60, 3536-3542
  13. DeWeerd, K.A. and D.L. Bedard. 1999. Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ. Sci. Technol. 33, 2057-2063 https://doi.org/10.1021/es9812498
  14. Frame, G.M., J.W. Cochran, and S.S. Bwadt. 1996. Complete PCB congener distributions for 17 Aroclor mixtures determined termined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. J. High Resolut. Chromatogr. 19, 657-668 https://doi.org/10.1002/jhrc.1240191202
  15. Hartkamp-Commandeur, L.C.M., J. Gerritse, H.A.J. Govers, and J.R. Parsons. 1996. Reductive dehalogenation of polychlorinated biphenyls by anaerobic microorganisms enriched from Dutch sediments. Chemosphere 32, 1275-1286 https://doi.org/10.1016/0045-6535(96)00039-2
  16. Holliger, C., G. Wohlfarth, and G. Diekert. 1998. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22, 383-398 https://doi.org/10.1111/j.1574-6976.1998.tb00377.x
  17. Kim, J. and G-Y. Rhee. 1997. Population dynamics of polychlorinated biphenyl-dechlorinating microorganisms in contaminated sediments. Appl. Environ. Microbiol. 63, 1771-1776
  18. Kim, J. and G-Y. Rhee. 1999. Interactions of polychlorinated biphenyl-dechlorinating microorganisms with methanogens and sulfate reducers. Environ. Toxicol. Chem. 18, 2696- 2702 https://doi.org/10.1897/1551-5028(1999)018<2696:RDOPBI>2.3.CO;2
  19. Middeldorp, P.J.M., J. de Wolf, A.J.B. Zehnder, and G. Schraa. 1997. Enrichment and properties of a 1,2,4-trichlorobenzene- dechlorinating methanogenic microbial consortium. Appl. Environ. Microbiol. 63, 1225-1229
  20. Mohn, W.A. and J.M. Tiedje. 1992. Microbial reductive dechlorination. Microbiol. Rev. 56, 482-507
  21. Murray, R.K., D.K. Granner, P.A. Mayes, and V.W. Rodwell. 2000. Harper's Biochemicstry, p. 561-566. Appleton & Lange, Stanford, Stamford, Connecticut
  22. Rhee, G-Y., B. Bush, C.M. Bethoney, A. DeNucci, H.-M. Oh, and R.C. Sokol. 1993. Reductive dechlorination of Aroclor 1242 in anaerobic sediments: Pattern, rate and concentration dependence. Environ. Toxicol. Chem. 12, 1025-1032 https://doi.org/10.1897/1552-8618(1993)12[1025:RDOAIA]2.0.CO;2
  23. Schulz, D.E., G. Petrick, and J.C. Duinker. 1989. Complete characterization of polychlorinated biphenyl congeners in commercial Aroclor and Clophen mixtures by multidimensional gas chromatography-electron capture detection. Environ. Sci. Technol. 23, 852-859 https://doi.org/10.1021/es00065a015
  24. Shelton, D.R. and J.M. Tiedje. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 47, 850-857
  25. Sokol, R.C., O-S. Kwon, C.M. Bethoney, and G-Y. Rhee. 1994. Reductive dechlorination of polychlorinated biphenyls (PCBs) in St. Lawrence River sediments and variations in dechlorination characteristics. Environ. Sci. Technol. 28, 2054-2064 https://doi.org/10.1021/es00061a013
  26. Van Dort, H.M., L.A. Smullen, R.J. May, and D.L. Bedard. 1997. Priming microbial meta-dechlorination of polychlorinated biphenyls that have persisted in Housatonic River sediments for decades. Environ. Sci. Technol. 31, 3300-3307 https://doi.org/10.1021/es970347a
  27. Wu, Q.Z., D.L. Bedard, and J. Wiegel. 1999. 2,6- Dibromobiphenyl primes extensive dechlorination of Aroclor 1260 in contaminated sediments at $8-30^{\circ}C$ by stimulating growth of PCB-dechlorinating microorganisms. Environ. Sci. Technol. 33, 595-602 https://doi.org/10.1021/es9926111