Browse > Article

Effects of Sulfate Concentration on the Anaerobic Dechlorination of Polychlorinated Biphenyls in Estuarine Sediments  

Cho Young Cheol (College of Environment and Applied Chemistry and Center for Environmental Studies, Kyung Hee University)
Oh Kyoung Hee (School of Biological Sciences, College of Natural Sciences, Seoul National University)
Publication Information
Journal of Microbiology / v.43, no.2, 2005 , pp. 166-171 More about this Journal
Abstract
In order to determine the effects of sulfate concentration on the anaerobic dechlorination of polychlorinated biphenyls, sediments spiked with Aroclor 1242 were made into slurries using media which had various sulfate concentrations ranging from 3 to 23 mM. The time course of dechlorination clearly demonstrated that dechlorination was inhibited at high concentration of sulfate due to less dechlori-nation of meta-substituted congeners. When the dechlorination patterns were analyzed by the calculation of Euclidean distance, the dechlorination pathway in the 3 mM sulfate samples was found to be different from that observed in the 13 mM samples, although the extent of dechlorination in these two samples was similar. It is possible that the dechlorination in the high sulfate concentration samples is inhibited by the suppression of growth of methanogen, which have been shown to be meta-dechlorinating microorganisms.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Alder, A.C., M.M. Haggblom, S.R. Oppenheimer, and L.Y. Young. 1993. Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ. Sci. Technol. 27, 530-538   DOI
2 Bedard, D.L. and J.F. Quensen, III. 1995. Microbial reductive dechlorination of polychlorinated biphenyls, p. 127-216. In L.Y. Young and C.E. Cerniglia (eds.), Microbial Transformation and Degradation of Toxic Organic Chemicals. Wiley-Liss, Inc., New York
3 Brown, J.F., Jr., R.E. Wagner, D.L. Bedard, M.J. Brennan, J.C. Carnaan, R.J. May, and T.J. Tofflemire. 1984. PCB transformation in upper Hudson sediments. Northeast Environ. Sci. 3, 167-179
4 Capone, D.G. and R.P. Kiene. 1988. Comparison of microbial dynamics in marine and freshwater sediments: contrasts in carbon metabolism. Limnol. Oceanogr. 33, 725-749   DOI   ScienceOn
5 Cho, Y-C., O-S. Kwon, R.C. Sokol, C.M. Bethoney, and G-Y. Rhee. 2001. Microbial PCB dechlorination in dredged sediments and the effect of moisture. Chemosphere 43, 1119-1126   DOI   ScienceOn
6 Kim, J. and G-Y. Rhee. 1999. Interactions of polychlorinated biphenyl-dechlorinating microorganisms with methanogens and sulfate reducers. Environ. Toxicol. Chem. 18, 2696-2702   DOI
7 Rhee, G-Y., B. Bush, C.M. Bethoney, A. DeNucci, H.-M. Oh, and R.C. Sokol. 1993b. Reductive dechlorination of Aroclor 1242 in anaerobic sediments: pattern, rate and concentration dependence. Environ. Toxicol. Chem. 12, 1025-1032   DOI   ScienceOn
8 Rhee, G-Y., B. Bush, C.M. Bethoney, A. DeNucci, H.-M. Oh, and R. C. Sokol. 1993c. Anaerobic dechlorination of Aroclor 1242 as affected by some environmental conditions. Environ. Toxicol. Chem. 12, 1033-1039   DOI   ScienceOn
9 Sokol, R.C., C.M. Bethoney, and G-Y. Rhee. 1994a. Effect of hydrogen on the pathway and products of PCB dechlorination. Chemosphere 29, 1735-1742   DOI   ScienceOn
10 Rhee, G-Y., R.C. Sokol, C.M. Bethoney, Y.-C. Cho, R.C. Frohnoefer, and T. Erkkila. 2000. Kinetics of polychlorinated biphenyl dechlorination and growth of dechlorinating microorganisms. Environ. Toxicol. Chem. 20, 721-726   DOI   ScienceOn
11 Mohn, W.W. and J.M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56, 482-507   PUBMED
12 Yang, Y. and P.L. McCarty. 1998. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32, 3591-3597   DOI   ScienceOn
13 Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese, and R.S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296   PUBMED
14 Sokol, R.C., C.M. Bethoney, and G-Y. Rhee. 1998. Effect of Aroclor 1248 concentration on the rate and extent of PCB dechlorination. Environ. Toxicol. Chem. 17, 1922-1926   DOI   ScienceOn
15 Ye, D., J.F Quensen, III, J.M. Tiedje, and S.A. Boyd. 1995. Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria. Appl. Environ. Microbiol. 61,2166-2171   PUBMED
16 Kim, J. and G-Y. Rhee. 1997. Population dynamics of polychlorinated biphenyl-dechlorinating microorganisms in contaminated sediments. Appl. Environ. Microbiol. 63, 1771-1776   PUBMED
17 Bedard, D.L., R. Unterman, L.H. Bopp, M.J. Brennan, M.L. Haberl, and C. Johnson. 1986. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51, 761-768   PUBMED
18 Zwiernik, M.J., J.F. Quensen, III, and S.A. Boyd. 1998. $FeSO_4$ amendments stimulate extensive anaerobic PCB dechlorination. Environ. Sci. Technol. 32, 3360-3365   DOI   ScienceOn
19 Sokol, R.C., O-S. Kwon, C.M. Bethoney, and G-Y. Rhee. 1994b. Reductive dechlorination of polychlorinated biphenyls (PCBs) in St. Lawrence River sediments and variations in dechlorination characteristics. Environ. Sci. Technol. 28, 2054-2064   DOI   ScienceOn
20 Kuhn, E.P., G.T. Townsend, and J.M. Suflita. 1990. Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines on anaerobic aquifer slurries. Appl. Environ. Microbiol. 56, 2630-2637   PUBMED
21 Allard, A.-S., P.-A. Hynning, M. Remberger, and A.H. Neilson. 1992. Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures growth with coumarin and flavanone glycones and aglycones. Appl. Environ. Microbiol. 58, 961-968   PUBMED
22 Haggblom, M.M., M.D. Rivera, and L.Y. Young. 1993. Effects of auxiliary carbon sources and electron acceptors on methanogenic degradation of chlorinated phenols. Environ. Toxicol. Chem. 12, 1395-1403   DOI   ScienceOn
23 Holliger, C., G. Wohlfarth, and G. Diekert. 1999. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22, 383-398   DOI   ScienceOn
24 Cho, Y.-C., R.C. Sokol, and G-Y. Rhee. 2002. Kinetics of polychlorinated biphenyl dechlorination by Hudson River, New York, USA, sediment microorganisms. Environ. Toxicol. Chem. 21, 715-719   DOI   ScienceOn
25 Chang, B.V., S.W. Chou, and S.Y. Yuan. 1999. Dechlorination of polychlorinated biphenyls by an anaerobic mixed culture. J. Environ. Sci. Health A. 34, 1299-1316   DOI
26 Mohn, W.W. and K.J. Kennedy. 1992. Limited degradation of chlorophenols by anaerobic sludge granules. Appl. Environ. Microbiol. 58, 2131-2136   PUBMED
27 Rhee, G-Y., R.C. Sokol, B. Bush, and C.M. Bethoney. 1993a. Longterm study of the anaerobic dechlorination of Aroclor 1254 with and without biphenyl enrichment. Environ. Sci. Technol. 27,714-719   DOI   ScienceOn
28 Monserrate, E. and M.M. Haggblom, 1997. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl. Environ. Microbiol. 63, 3911-3915   PUBMED
29 Jensen, S., L. Renberg, and L. Reutergardh, 1977. Residue analysis of sediment and sewage sludge for organochlorine in the presence of elemental sulfur. Anal. Chem. 49, 316-318   DOI   ScienceOn
30 Cho, Y.-C., J. Kim, R.C. Sokol, and G-Y. Rhee. 2000. Biotransformation of PCBs in St. Lawrence River sediment: reductive dechlorination and dechlorinating microbial populations. Can. J. Fish. Aquat. Sci. 57, 95-100   DOI   ScienceOn
31 Morris, P.J., W.W. Mohn, J.F. Quensen, III, J.M. Tiedje, and S.A. Boyd. 1992. Establishment of a polychlorinated biphenyldegrading enrichment culture with predominantly meta dechlorination Appl. Environ. Microbiol. 58, 3088-3094   PUBMED
32 Lee, M.D., J.M. Odom, and R.J. Buchaman, Jr. 1998. New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Annu. Rev. Microbiol. 52, 423-452   DOI   ScienceOn