DOI QR코드

DOI QR Code

Microsized Corn-Oil Droplet (MOD)의 Trichloroethylene (TCE) 생물학적 탈염소화 분해 자연저감 완효성 촉진제 적용성 평가

Feasibility of Natural Attenuation for TCE Anaerobic Reductive Dechlorination Using Microsized Corn-Oil Droplet as an Activator

  • 한경진 (한국교통대학교 환경공학과) ;
  • 김희윤 (고려대학교 환경시스템공학과) ;
  • 권수열 (한국방송통신대학교 보건환경학과) ;
  • 김영 (고려대학교 환경시스템공학과)
  • Kyungjin Han (Department of Environmental Engineering, Korea National University of Transportation) ;
  • Huiyun Kim (Department of Environmental Engineering, Korea University) ;
  • Sooyoul Kwon (Department of Environmental Health, Korea National Open University) ;
  • Young Kim (Department of Environmental Engineering, Korea University)
  • 투고 : 2023.11.27
  • 심사 : 2024.01.25
  • 발행 : 2024.01.30

초록

Recently, enhanced in situ bioremediation using slow substrate release techniques has been actively researched for managing TCE-contaminated groundwater. This study conducted a lab-scale batch reactor experiment to evaluate the feasibility of natural attenuation for TCE dechlorination using microsized corn-oil droplet (MOD) as an activator considering the following three factors: 1) TCE dechlorination in the presence or absence of MOD; 2) TCE dechlorination in the presence or absence of inactivator of native microbial activity; and 3) MOD concentration effects on TCE dechlorination. Batch reactors were constructed using site groundwater and soil in which Dehalococcoides bacteria were present. Without MOD, TCE was decomposed into dichloroethylene (DCE). However, other by-products of TCE dechlorination were not detected. With MOD, DCE, vinyl chloride (VC), and ethylene (ETH) were sequentially observed. This result confirmed that MOD effectively supplied electrons to complete dechlorination of TCE to ETH. However, when an excess of MOD was provided, it formed unfavorable conditions for anaerobic digestion because dechlorination reaction did not proceed while propionic acid was accumulated after DCE was generated. Therefore, if an appropriate amount of MOD is supplied, MOD can be effectively used as a natural reduction activator to promote biodegradation in an aquifer contaminated by TCE.

키워드

과제정보

This research was supported by Korea Ministry of Environment and the Technology Institute (KEITI) as "The Subsurface Environmental Management (SEM) project (2018002480005 and 2021002470002)"

참고문헌

  1. Beach, B. A. (2016). Evaluation of an alternative natural surfactant for non aqueous phase liquid remediation, Master's Thesis, Western Michigan University, Kalamazoo, USA, 1-20. 
  2. Borden, R. C. (2006). Protocol for enhanced in situ bioremediation using emulsified edible oil, Environmental Security Technology Certification Program (ESTCP Project ER-0221), Arlington, VA. 
  3. Chen, L. J., Lin, S. Y., Chern, C. S., and Wu, S. C. (1997). Critical micelle concentration of mixed surfactant SDS/NP (EO) 40 and its role in emulsion polymerization, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 122(1-3), 161-168.  https://doi.org/10.1016/S0927-7757(96)03851-4
  4. Chiou, C. T. and Kile, D. E. (1994). Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter, Environmental Science & Technology, 28(6), 1139-1144.  https://doi.org/10.1021/es00055a026
  5. Das, M. P., Rebecca, L. J., Sharmila, S., and Chatterjee, S. (2012). Study on the effect of mercury (II) chloride as disinfectant on mixed culture, Journal of Chemical and Pharmaceutical Research, 4(12), 4975-4978. 
  6. Ding, L., Wu, H., Lei, J., Li, P., and Wang, L. (2023). Enhanced removal of hexavalent chromium and nitrate in aquifers by alkali-modified emulsified vegetable oil, Journal of Cleaner Production, 384(15), 135636. 
  7. Guetzloff, T. F. and Rice, J. A. (1994). Does humic acid form a micelle?, Science of the Total Environment, 152(1), 31-35.  https://doi.org/10.1016/0048-9697(94)90548-7
  8. Harkness, M., Fisher, A., Lee, M. D., Mack, E. E., Payne, J. A., Dworatzek, S., Roberts, J., Acheson, C., Herrmann, R., and Possolo, A. (2012). Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies, Journal of Contaminant Hydrology, 131(1-4), 100-118.  https://doi.org/10.1016/j.jconhyd.2012.01.011
  9. Inanc, B., Matsui, S., and Ide, S. (1999). Propionic acid accumulation in anaerobic digestion of carbohydrates: An investigation on the role of hydrogen gas, Water Science and Technology, 40(1), 93-100.  https://doi.org/10.2166/wst.1999.0021
  10. Jo, Y. J., Lee, J. Y., Yi, M. J., Kim, H. S., and Lee, K. K. (2010). Soil contamination with TCE in an industrial complex: contamination levels and implication for groundwater contamination, Geosciences Journal, 14(3), 313-320.  https://doi.org/10.1007/s12303-010-0022-4
  11. Kim, H. Y., Han, K. J., Yun, G. H., Yeum, Y. H., Jeon, J. W., Choi J. B., Kwon, S. Y., and Kim, Y. (2021). Assessing the feasibility of natural attenuation for TCE biological dechlorination by MOD (Microsized Corn-Oil Droplet) as an activator in pilot study, Proceedings of the 2021 Fall Meeting of Korean Society of Soil and Groundwater Environment, Korean Society of Soil and Groundwater Environment, 12-13. [Korean Literature] 
  12. Liang, S., Kuo, Y., Chen, S., Chen, C., and Kao, C. (2013). Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers, Journal of Hazardous Materials, 254, 107-115. 
  13. Lin, W. H., Chien, C. C., Lu, C. W., Hou, D., Sheu, Y. T., Chen, S. C., and Kao, C. M. (2021). Growth inhibition of methanogens for the enhancement of TCE dechlorination, Science of the Total Environment, 787, 147648. 
  14. Marchaim, U. and Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion, Bioresource Technology, 43(3), 195-203.  https://doi.org/10.1016/0960-8524(93)90031-6
  15. Ministry of Environment. (2018). The results report of soil precise survey in soil measurement network point, Ministry of Environment. [Korean Literature] 
  16. National Research Council (NRC). (2000). Natural attenuation for groundwater remediation, National Academies Press, Washingto, USA. 
  17. O'Connor, D., Hou, D., Ok, Y. S., Song, Y., Sarmah, A. K., Li, X., and Tack, F. M. (2018). Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review, Journal of Controlled Release, 283, 200-213. 
  18. Sheu, Y., Chen, S., Chien, C., Chen, C., and Kao, C. (2015). Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater, Journal of Hazardous Materials, 284, 222-232. 
  19. Tsai, T., Liu, J., Chang, Y., Chen, K., and Kao, C. (2014). Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: A pilot-scale study, Journal of Hazardous Materials, 268, 92-101.  https://doi.org/10.1016/j.jhazmat.2014.01.004
  20. Wershaw, R. L. (1999). Molecular aggregation of humic substances, Soil Science, 164(11), 803-813. https://doi.org/10.1097/00010694-199911000-00004