• Title/Summary/Keyword: decentralized linear control

검색결과 78건 처리시간 0.026초

A Unified Approach to Exact, Approximate, Optimized and Decentralized Output Feedback Pole Assignment

  • Tarokh, Mahmoud
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.939-947
    • /
    • 2008
  • The paper proposes a new formulation of the output feedback pole assignment problem. In this formulation, a unified approach is presented for solving the pole assignment problem with various additional objectives. These objectives include optimizing a variety of performance indices, and imposing constraints on the output feedback matrix structure, e.g. decentralized structure. Conditions for the existence of the output feedback are discussed. However, the thrust of the paper is on the development of a convergent pole assignment algorithm. It is shown that when exact pole assignment is not possible, the method can be used to place the poles close to the desired locations. Examples are provided to illustrate the method.

일련의 상호연결된 연속시간 시스템의 비집중 모델기준 적응제어 (Decentralized Model Reference Adaptive Control of a Class of Interconnected Continuous Systems)

  • 유준;김성수;임인성
    • 대한전자공학회논문지
    • /
    • 제24권6호
    • /
    • pp.930-935
    • /
    • 1987
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected continuous linear system composed of a number of single input single output subsystems. The scheme can treat the unknown strengh of interconnections as well as the uncertainty of subsystems. The scheme automatically adjusts the local feedback gains so that the output of each subsystem exponetially tracks that of the reference model.

  • PDF

고속 WALSH 변환에 의한 분포정수계의 최적제어 (Optimal Control of Distributed Parameter Systems Via Fast WALSH Transform)

  • 김태훈;김진태;이승;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권10호
    • /
    • pp.464-472
    • /
    • 2001
  • This study uses distributed parameter systems as the spatial discretization technique, modelling in lumped parameter systems, and applies fast WALSH transform and the Picard's iteration method to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In exercising optimal control of distributed parameter systems, excellent consequences are found without using the existing decentralized control or hierarchical control method. This study will help apply to linear time-varying systems and non-linear systems. Further research on algorithm will be required to solve the problems of convergence in case of numerous applicable intervals.

  • PDF

상호 연결된 연속시간 시스템의 비집중 적응 안정화 (Decentralized stabilization of a class of uncertain interconnected continuous systems)

  • 김성수;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.554-559
    • /
    • 1986
  • This paper considers the problem of stabilizing a composite system formed by interconnecting a number of single-input single-output linear continuous systems. The problem is general in the sense that in addition to the standard assumption about the uncertainty of the subsystems, the strength of interconnections is assumed unknown. A method to design a local adaptive feedback control is first presented, and then the resultant closed-loop system is assured to be globally stable. Also, a numerical example is illustrated via computer simulation.

  • PDF

불확정성 선형시스템에 대한 $H_{\inf}$ 노옴 성능 경계를 만족하는 신뢰성 제어시스템의 설계 (Design of Reliable Control System Guaranteeing $H_{\inf}-norm$ Peformance Bound for Uncertain Linear System)

  • 박세화
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.1-14
    • /
    • 1996
  • Design of a reliable control systems is investigated for a class of uncertain linear plants. The uncertainty considered here is for the ase of uncertainty in the system matrix. A decentralized control scheme with two observer-based feedback controllers is developed, and it is shown that the resulting closed-loop system is reliable in the sense that the control scheme provides guaranteed stability and $H_{\infty}$-norm bounded performance in the event of sensor and/or actuator failures as well as in the presence of parameter uncertainties. We observed that soft-type failures were additional exogenous inputs to the closed-loop system. As a results, the sensor and/or actuator failures can be tolerated in the design, which is achieved by extending the methodology developed in.

  • PDF

여러 매개상수 특이접동계에서의 여러 시간스케일 분리와 최적제어 문제 (Multi-Time Scale Separations and Optimal Control Problems of Multi-Parameter Singular Perturbation Systems)

  • 김삼수;홍재근;김수중
    • 대한전자공학회논문지
    • /
    • 제24권1호
    • /
    • pp.20-27
    • /
    • 1987
  • The hierarchical approach method is proposed to sperate each different time scale sub-systems from linear time invariant multi-parameter singular perturbation systems. By means of this proposal, the original multi-parameter singular perturbation systems is completely separated into independent subsystems with each different time scale. It is also investigated that the controllability of the system is invariant. And this paper applies singular perturbation methods to the minimum control effort problem for linear time invariant systems with constrained controls. Also near-optimum control theory, which is based on dividing the total time interval with the time scales respectively, is proposed. As a result, the time scale separation method is show to be particularly useful in a near optimum design which can be otained through a decentralized control structure.

  • PDF

페널티화된 LMI를 이용한 구조적 제약이 있는 제어기 설계 (Structured Controller Synthesis Using a Penalized LMI Method)

  • 김석주;권순만;천종민;문영현
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.656-661
    • /
    • 2005
  • This paper is concerned with an iterative linear matrix inequality (LMI) approach to the design of a structurally constrained output feedback controller such as decentralized control. The structured synthesis is formulated as a novel rank-constrained LMI optimization problem, where the controller parameters are explicitly described so as to impose structural constraints on the parameter matrices. An iterative penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments are performed to illustrate the effectiveness of the proposed method.

스마트 스페이스 구축을 위한 선형 디지털 분산 제어 시스템 개발 (Linear Digital Decentralized Control System for Smart Space)

  • 김도완;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.36-41
    • /
    • 2005
  • 스마트 스페이스 환경은 유무선 네트워크기반과 다중 센서 기반이며 많은 제어기를 필요로 한다. 이러한 환경을 위해서 본 논문에서는 멀티레이트 디지털 분산 제어 제어기를 제안한다. 제안된 제어기 설계 방법은 디지털 재 설계 기법을 적용하는 것이다. 구체적으로 제안된 기법은 delta-operator와 멀티레이트를 기반으로 하며 선형 행렬 부등식형태로 나타난다. 제안된 기법의 우수성을 검증하기 위해서 스마트 스페이스에서 널리 사용되는 Heating, ventilating, and alt conditioning (HVAC) 시스템에 대해서 모의실험을 하였다.

발전플랜트를 위한 분산다단계-다중모델 적응제어기의 설계 (Design of Decentralized Multilevel-Multiple Model Adaptive Controller(DM-MMAC) for Power Plant)

  • 최선욱;이은호;박용식;김영철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1119-1125
    • /
    • 1999
  • In this paper, a decentralized multilevel-adaptive controller for a boiler-turbine system is designed by using multiple model adaptive method. It is applied to the drum type boiler-turbine system which is simplified from Boryung T/P #1,2 model. A linearlized model is decomposed into three subsystems by means of linear transformation. Then the DMC based on such subsystem is designed and a Multiple Model Adaptive Control(MMAC) scheme is applied for the purpose of the good tracking to variable load demands of the thermal power plant. The good performance of the designed controller is shown by simulations in various conditions that have the large step and ramp change of power demamd.

  • PDF

중복 분해 기법을 이용한 인공위성 편대 비행의 분산제어 (Decetralized Control of Multiple Satellites Formation Flying Based on the Overlapping Decomposition Technique)

  • 이호재;김도완
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1014-1018
    • /
    • 2012
  • This paper presents a decentralized controller design for formation flying of multiple satellites based on the overlapping decomposition technique. Each satellite is assumed to avail only the information of its own and in front of itself, which restricts the structure of a controller gain matrix to an overlapped form. The concerned large-scale system is expanded using the overlapping decomposition technique. Design condition is represented in terms of linear matrix inequalities with small-scale systems in a decentralized form, based on the expanded system. The resulting controller is contracted to the original overlapped form so as to close the original system. A numerical simulation shows the effectiveness of the proposed technique.