• Title/Summary/Keyword: dead load

Search Result 344, Processing Time 0.027 seconds

Rise Ratio of the 3 Continuous Spans Half Through Steel Arch Bridges Considering Wind Resistant Dynamic Stability (3경간 연속 중로식 강Arch 교량의 내풍안정성을 고려한 Rise 비)

  • 강성후;박선준;최명기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.76-83
    • /
    • 2004
  • The most important element is a rise ratio when regarding beauty and economics of arch bridges. Only the effect of dead load has been considered to decide the rise ratio. In this study, when going over the rise ratio of arch bridges, examined the problems, that the determination of the rise ratio by the dead load has, by adding the factor of a determination of optimum rise ratio, which is not only the effect of the dead load that has been currently considered but also the problem with respect to wind resistant dynamic stability that is now taken seriously. Synthetically, when deciding rise ratio that is investigated in basic step of design, it is not necessary to consider the evaluation wind resistant dynamic stability.

  • PDF

A Study on Dead-Zone Turbine Control System (불감대 특성을 지닌 터빈제어 계통에 관한 연구)

  • Hwang, Jae-Ho;Lee, Sang-Hyug;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.332-336
    • /
    • 1989
  • This paper describes the nonlinear analysis and effectual operation methods of thermal power plant turbine control system. When the turbine control governor system has dead-zone characteristic, the effectual frequency development control is difficult, because turbine output does not correspond to frequency deviation in dead-zone. Therefore to obtain effectual correspondance, the turbine dead-zone characteristic must be analyzed by proper method. This paper proposes this nonlinear analysis and effectual plant operating load.

  • PDF

Robust 2 D.O.F. Controller for the Precesses with dead-time (시간지연을 갖는 프로세서의 견실한 2자유도 제어기)

  • 최주용;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.319-319
    • /
    • 2000
  • In this paper, A dead-time compensator (DTC) for the processes with long dead-time is proposed. The processes which consist of dead-time, time-constant, gain are estimated by the linear least squares method in the frequency domain. A Smith predictor(SP) modified by including a filter becomes a two degree of freedom DTC. So the proposed DTC can yield the desirable setpoint and load disturbance responses separately. PI controller is used for the primary controller and the filter is tuned to be robust. Simulation examples demonstrate the properties of the proposed DTC.

  • PDF

Dead Beat Controlled PWM Inverter with On Line Parameter Estimation (적응 추정 기법을 이용한 PWM 인버터의 Dead Beat 제어)

  • Roh, Chung-Wook;Moon, Gun-Woo;Jung, Young-Seok;Yoon, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.388-390
    • /
    • 1995
  • A new control scheme based on dead beat control with adaptive parameter estimation for PWM Inverter is proposed. The proposed scheme updates dead beat control parameters continouously, and make PWM inverter excellent performance at any load or parameter condition. Simulation results show very attractive features in this proposed scheme.

  • PDF

Community Characteristics and Assessment of Water Quality Impact by Plants at Flooded Area (저수지역 식물의 군집특성 및 수질영향 평가)

  • Lee, Yosang;Kim, Hojoon;Jeong, Seon A
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.407-415
    • /
    • 2006
  • This study carried out submerged area due to Dam construction in the near future. It includes species classification of plant, survey of community structure, examination of pollutant load and assessment of water quality impact. The vascular plants of this area are listed 224 taxa; 64 families, 168 genera, 193 species, 30 varieties and 1 form. This study area is classified into total 21 communities, most community was consist of grass vegetation. Among the communities, Erigeron annuus ($869,286m^2$, 22%) community was dominant and Erigeron annuus-Avena fatua comminity (16%) was subdominant until May, and then Erigeron canadensis community occupied most area to $1,774,985m^2$ (32%) from May to July. For the evaluation of water quality impact due to submerged macrophyte, nutrient release test was conducted both dead body macrophyte and living body macrophyte. The results of release test show that T-N is not released at dead body macrophyte, but it is released at living body macrophyte, especially living body Artemisia priceps var. orientalis shows 1.436mgN/g. At release test of dead body macrophyte, T-P release rate of Erigeron annuus shows 0.500mgP/g at the top of them and it also shows 0.436mgP/g at Erigeron annuus of living body macrophyte. T-N load of submerged macrophyte shows 0.76% by comparison of total load on watershed and T-P load of that shows 3.61%. In case of removal macrophyte for reduction of pollutant load in submerged area, T-N load of submerged macrophyte changes from 0.76% to 0.15% by comparison of total load on watershed and T-P load of that changes from 3.61% to 0.72%.

An Advanced Dead-Time Compensation Method for Dual Inverter with a Floating Capacitor (플로팅 커패시터를 갖는 이중 인버터를 위한 향상된 데드 타임 보상 기법)

  • Kang, Ho Hyun;Jang, Sung-Jin;Lee, Hyung-Woo;Hwang, Jun-Ho;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.271-279
    • /
    • 2022
  • This paper proposes an advanced dead-time compensation method for dual inverter with a floating capacitor. The dual inverter with floating capacitor is composed of double two-level inverters and a bulk electrolytic capacitor. The output voltage of the dual inverter is dropped by the conduction voltage of the power semiconductors. The voltage drop and dead-time cause the fundamental and harmonic distortions of output currents. When supplied power for OEW-load is low, the dual inverter operates as single inverter for effective operation. The dead-time compensation method for the dual inverter operated as single inverter is needed for reliability. The proposed method using band pass filter in this paper compensates dead-time, dead-time error and changed voltage drop error of power semiconductors for the dual inverter and dual inverter operated as single inverter. The effectiveness of the proposed method is verified by simulation results.

Structural Analysis for Building Structures reflecting Differential Column Shortening based upon Construction Sequence (시공 공정에 따른 건축 구조물의 구조해석 및 수직부재의 부등변형)

  • 조상규;이형우;최창식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.333-341
    • /
    • 1998
  • The general method of structural analysis for building structures has been based upon the assumption that all dead loads are imposed on a building simultaneously throughout the entire structure. In reality, buildings are built floor by floor or a few floors at a time. The construction dead load is applied gradually onto the structure as the structure is being erected. The prevailing commercial software for structural analysis used to date have resulted in the representation of inaccurate structural behaviors. The actual construction sequence and the loading of the structure ere not properly represented in the analysis. This paper identifies the source of the errors and develops the algorithm to account for the differential column shortening due to construction dead load based upon a given construction sequence

  • PDF

Sensitivity Analysis by Parametric Study of Load Factor for a Concrete Box Girder Railway Bridge Using Limit State Design

  • Yeo, Inho;Sim, Hyung-Bo;Kim, Daehwan;Kim, Yonghan
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.5-9
    • /
    • 2015
  • Reliability based limit state design method is replacing traditional deterministic designs such as allowable stress design and/or ultimate strength design methods in world trends. European design code(Eurocode) has adopted limit state design, and Korea road bridge design standard has also recently been transferred to limit state design method. In this trend, Korea railroad design standard is also preparing for adopting the same design concept. While safety factors are determined empirically in traditional design, load combinations as well as load factors are determined by solving limit state equations. General partial safety factors are evaluated by using AFORM(Advanced First Order Reliability Method) in the reliability based limit state design method. In this study sensitivity analysis is carried out for a dead load factor and a live load factor. Relative precisions of the dead load and the live load factors are discussed prior to the AFORM analysis. Furthermore the sectional forces of design and the material quantities required by two different design methods are compared for a PSC box girder railway bridge.

A Study on the Novel Space Vector PWM Inverter without Dead time (데드 타임 없는 새로운 공간 벡터 전압 변조 인버터에 관한 연구)

  • Seo Il-Soo;Song Eui-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1169-1171
    • /
    • 2004
  • Voltage source inverters are required dead time to prevent the short current in the dc link. In recent years, the dead time effect has been investigated in many literatures. This paper presents on the novel space vector PWM inverter without dead time. The proposed inverter don't need to sense load current and to calculate for dead time compensation. Transformers are inserted each leg in the proposed inverter. The proposed method is analyzed each mode and then the simulation results verify the proposed method.

  • PDF

Dead Time Compensation Algorithm for the 3-phase Inverter (3상 인버터에 대한 간단한 데드타임 보상 알고리즘)

  • Kim, Hong Min;Baek, Seung Ho;Ahn, Jin Woo;Lee, Dong Hee
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.71-72
    • /
    • 2011
  • This paper presents a novel and direct dead time compensation method of the 3 phase inverter using space vector pulse width modulation(SVPWM) topology. In the turn on time calculation of the effective voltage, the dead time effect is directly compensated according to the current direction of the midium voltage reference. Since the turn on time of the effective voltage vector is affected by the dead time, the loss time is compensated to turn on time of the effective voltage vector. And the dead time is added to the calculated voltage vector switching times according to the current direction. For the more effective compensation, the direction of the midium phase current is considered by the practical direction and voltage drops in the power devices. The proposed method can compensate the dead time which is considered feedback error or direction of middle phase current without coordinate transform in added controller. The proposed dead time compensation scheme is verified by the computer simulation and experiments of 3 phase R L load.

  • PDF