DOI QR코드

DOI QR Code

An Advanced Dead-Time Compensation Method for Dual Inverter with a Floating Capacitor

플로팅 커패시터를 갖는 이중 인버터를 위한 향상된 데드 타임 보상 기법

  • Kang, Ho Hyun (LS Electric Co., Ltd.) ;
  • Jang, Sung-Jin (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Hyung-Woo (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Hwang, Jun-Ho (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Dept. of Electrical and Computer Engineering, Ajou University)
  • Received : 2022.04.21
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

This paper proposes an advanced dead-time compensation method for dual inverter with a floating capacitor. The dual inverter with floating capacitor is composed of double two-level inverters and a bulk electrolytic capacitor. The output voltage of the dual inverter is dropped by the conduction voltage of the power semiconductors. The voltage drop and dead-time cause the fundamental and harmonic distortions of output currents. When supplied power for OEW-load is low, the dual inverter operates as single inverter for effective operation. The dead-time compensation method for the dual inverter operated as single inverter is needed for reliability. The proposed method using band pass filter in this paper compensates dead-time, dead-time error and changed voltage drop error of power semiconductors for the dual inverter and dual inverter operated as single inverter. The effectiveness of the proposed method is verified by simulation results.

본 논문은 플로팅 커패시터를 갖는 이중 인버터의 향상된 데드 타임 보상 기법을 제안한다. 플로팅 커패시터를 갖는 이중 인버터는 2-레벨 단일 인버터보다 전력 반도체가 6개가 추가된다. 전력 반도체의 수가 증가로 이중 인버터의 출력 전압은 추가된 전력 반도체의 도통 전압만큼 감소되며 출력 전류 품질은 전력 반도체에 의한 전압 강하와 데드 타임에 의해 저하된다. 본 논문에서 제안하는 기법은 이중 인버터의 데드 타임 및 전력 반도체의 도통 전압을 보상하여 전류 품질을 개선하고 추가적인 대역통과 필터를 이용한 고조파 보상 기법을 통해 데드 타임과 도통 전압 보상에 대한 오차를 추가 보상한다.

Keywords

Acknowledgement

This research was supported by Korea Electric Power corporation.(Grant number:R21XO01-11)

References

  1. K.-B. Lee, Advanced Power Electronics, munundang, 2019, ISBN 979-11-5692-402-9.
  2. Y. Cho, K.-B. Lee, J.-H. Song, and Y. I. Lee, "Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors," IEEE Trans. Power Electron., vol.30, no.4, pp.2182-2190, 2015. DOI: 10.1109/TPEL.2014.23261
  3. X. Zhou, J. Sun, H. Li, M. Lu, and F. Zeng, "PMSM Open-Phase Fault-Tolerant Control Strategy Based on Four-Leg Inverter," IEEE. Trans. Power Electron., vol.35, no.3, pp.2799-2808, 2020. DOI: 10.1109/TPEL.2019.2925823
  4. D.-W. Seo, Y. Bak, and K.-B. Lee, "An Improved Rotating Restart Method for a Sensorless Permanent Magnet Synchronous Motor Drive System Using Repetitive Zero Voltage Vectors," IEEE Trans. Ind. Electron., vol.67, no.5, pp.3496-3504, 2020. DOI: 10.1109/TIE.2019.2914647
  5. G. Wang, L. Yang, B. Yuan, B. Wang, G. Zhang, D. Xu, P. Xu., and Z. Q. Zhu, "Pseudo-Random High-Frequency Square-Wave Voltage Injection Based Sensorless Control of IPMSM Drives for Audible Noise Reduction," IEEE Trans. Ind. Electron., vol.63, no.12, pp.7423-7433, 2016. DOI: 10.1109/ITEC.2019.8790628
  6. H.-W. Lee, D.-H. Cho, and K.-B. Lee, "Rotor Position Estimation over Entire Speed Range of Interior Permanent Magnet Synchronous Motors," J. Power Electron., vol.21, no.4, pp.639-702, 2021. DOI: 10.1007/s43236-021-00217-9
  7. N. K. Nguyen, F. Meinguet, E. Semail, and X. Kestelyn, "Fault-Tolerant Operation of an Open-End Winding Five-Phase PMSM Drive with Short Circuit Inverter Fault," IEEE Trans. Ind. Electron., vol.63, no.1, pp.595-605, 2016. DOI: 10.1109/TIE.2014.2386299
  8. Z. Song, X. Ma, and Y. Yu, "Design of Zero-Sequence Current Controller for Open-End Winding PMSMs Considering Current Measurement Errors," IEEE Trans. Power Electron., vol.35, no.6, pp.6127-6139, 2020. DOI: 10.1109/TPEL.2019.2952402
  9. M. Priestley, D. Xiao, N. A. M. Said, R. Dutta, and J. E. Fletcher, "Post Fault Control Strategy for IPMSMs with Non-Sinusoidal Back-EMFs in an Open-Ended Winding Configuration," in Proc. 42nd Annu. Conf. IEEE Ind. Electron. Soc., pp. 28792884, 2016.
  10. W. Zhao, B. Wu, Q. Chen, and J. Zhu, "Fault-Tolerant Direct Thrust Force Control for a Dual Inverter Fed Open-End Winding Linear Vernier Permanent Magnet Motor Using Improved SVPWM," IEEE Trans. Ind. Electron., vol.65, no.9, pp.7458-7467, 2018. DOI: 10.1109/TIE.2018.2795557
  11. A. Tani, M. Mengoni, M.; L. Zarri, G. Serra and D. Casadei, "Control of Multiphase Induction Motors with an Odd Number of Phases Under Open-Circuit Phase Faults," IEEE Trans. on Power Electronics, vol.27, no.2, pp.565-577, 2012. DOI: 10.1109/TPEL.2011.2140334
  12. E. Levi, I.N.W. Satiawan; N. Bodo and M. Jones, "A Space-Vector Modulation Scheme for Multilevel Open-End Winding Five-Phase Drives," IEEE Trans. on Energy Conversion, vol.27, no.1, pp.1-10, 2012. DOI: 10.1109/TEC.2011.2178074
  13. V. T. Somasekhar, M. R. Baiju, and K. Gopakumar, "Dual Two-Level Inverter Scheme for an Open-End Winding Induction Motor Drive with A Single DC Power Supply and Improved DC Bus Utilization," Proc. IEEElectr. Power Appl., vol.151, no.2, pp.230-238, 2004. DOI: 10.1049/ip-epa_20040023
  14. D. Casadei, G. Grandi, A. Lega, and C. Rossi, "Multilevel Operation and Input Power Balancing for a Dual Two-Level Inverter with Insulated DC Sources," IEEE Trans. Ind. Applicat., vol.44, no.6, pp.1815-1824, 2008. DOI: 10.1109/TIA.2008.2006323
  15. V. T. Somasekhar, K. Gopakumar, E. G. Shivakumar, and S. K. Sinha, "A Space Vector Modulation Scheme for a Dual Two Level Inverter Fed Open-End Winding Induction Motor Drive for The Elimination of Zero Sequence Currents," EPE J., vol.12, no.2, pp.26-36, 2002. DOI: 10.1080/09398368.2002.11463502
  16. Y. Zhou and H. Nian, "Zero-Sequence Current Suppression Strategy of Open Winding PMSG System with Common DC Bus Based on Zero Vector Redistribution," IEEE Trans. Ind. Electron., vol.62, no.6, pp.3399-3408, 2015. DOI: 10.1109/TIE.2014.2366715
  17. H. Zhan, Z. Q. Zhu, and M. Odavic, "Analysis and Suppression of Zero Sequence Circulating Current in Open Winding PMSM drives with Common DC Bus," IEEE Trans. Ind. Appl., vol.53, no.4, pp.3609-3620, 2017. DOI: 10.1109/ECCE.2016.7854872
  18. J. Kim, J. Jung, and K. Nam, "Dual-Inverter Control Strategy for High Speed Operation of EV Induction Motors," IEEE Trans. Ind. Electron., vol.51, no.2, pp.312-320, 2004. DOI: 10.1109/IECON.2002.1187500
  19. Z. Huang, T. Yang, P. Giangrande, S. Chowdhury, M. Galea and P. Wheeler, "Enhanced Performance of Dual Inverter with a Floating Capacitor for Motor Drive Applications," IEEE Trans. Power Electron., vol.36, no.6, pp.6903-6916, 2021. DOI: 10.1109/TPEL.2020.3040029
  20. Z. Shen and D. Jiang, "Dead-time effect compensation method based on current ripple prediction for voltage-source inverters," IEEE Trans. Power Electron., vol.34, no.1, pp.971-983, 2019. DOI: 10.1109/TPEL.2018.2820727
  21. S. Y. Kim, W. Lee, M. S. Rho, and S. Y. Park, "Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives," IEEE Trans. Ind. Electron., vol.57, no.5, pp.1609-1614, 2010. DOI: 10.1109/TIE.2009.2033098