• 제목/요약/키워드: dc loads

검색결과 255건 처리시간 0.026초

R-L부하를 가진 구형파 VSI의 전압크기 제어 (Voltage Amplitude Control of Square-Wave VSIs with an R-L Load)

  • 김경원;홍순찬;유종걸;김상균;박채운
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2001
  • This paper proposes a modified $\alpha$ conduction mode for controlling the output voltage magnitude of three-phase square-wave VSIs with an R-L load. From the viewpoint of both power capacity and switching losses, three-phase square-wave inverters are now used in most high power systems. When the square-wave VSI is driven with $\alpha$ conduction mode to control the magnitude of output voltages, interval over than half period is operated with $180^{\circ}$ conduction mode and the other interval with $120^{\circ}$ conduction mode. In $120^{\circ}$ conduction mode operation, two output terminals are connected to DC supply and the third one remains open. The potential of this open terminal will depend on the load characteristics and is unpredictable except the case of pure resistive loads. To cope this problem, we propose the modified α conduction mode.

  • PDF

Harmonic Current Compensation based on Three-phase Three-level Shunt Active Filter using Fuzzy Logic Current Controller

  • Salim, Chennai;Benchouia, M.T.;Golea, A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.595-604
    • /
    • 2011
  • A three-phase three-level shunt active filter controlled by fuzzy logic current controller which can compensate current harmonics generated by nonlinear loads is presented. Three-level inverters and fuzzy controllers have been successfully employed in several power electronic applications these past years. To improve the conventional pwm controller performance, a new control scheme based on fuzzy current controller is adopted for three-level (NPC) shunt active filter. The scheme is designed to improve compensation capability of APF by adjusting the current error using a fuzzy rule. The inverter current reference signals required to compensate harmonic currents use the synchronous reference detection method. This technique is easy to implement and achieves good results. To maintain the dc voltage across capacitor constant and reduce inverter losses, a proportional integral voltage controller is used. The simulation of global system control and power circuits is performed using Matlab-Simulink and SimPowerSystem toolbox. The results obtained in transient and steady states under various operating conditions show the effectiveness of the proposed shunt active filter based on fuzzy current controller compared to the conventional scheme.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

DVR시스템에 사용되는 인버터부의 LC필터 설계와 피드백 성능분석 (Design and Feedback Performance Analysis of the Inverter-side LC Filters Used in the DVR System)

  • 박종찬;손진근
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.79-84
    • /
    • 2015
  • Voltage sags are considered the dominant disturbances affecting power quality. Dynamic voltage restorers(DVRs) are mainly used to protect sensitive loads from the electrical network voltage disturbances such as sags or swells and could be used to reduce harmonic distortion of ac voltages. The typical DVR topology essentially contains a PWM inverter with LC Filter, an injection transformer connected between the ac voltage line and the sensitive load, and a DC energy storage device. For injecting series voltage, the PWM inverter is used and the passive filter consist of inductor(L) and capacitor(C) for harmonics elimination of the inverter. However there are voltage pulsation responses by the characteristic of the LC passive filter that eliminate the harmonics of the PWM output waveform of the inverter. Therefore, this paper presented design and feedback performance of LC filter used in the DVRs. The voltage control by LC filter should be connected in the line side since this feedback method allows a relatively faster dynamic response, enabling the elimination of voltage notches or spikes in the beginning and in the end of sags and strong load voltage THD reduction. Illustrative examples are also included.

풍력 터빈용 750 kW 급 고온초전도 발전기 모듈의 코일 구조 설계 및 열 해석 (Structural Design and Thermal Analysis of a Module Coil for a 750 kW-Class High Temperature Superconducting Generator for Wind Turbine)

  • 투덴수런 오운자르갈;고병수;성해진;박민원
    • 한국산업정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.33-40
    • /
    • 2019
  • 많은 풍력회사들은 큰 용량, 작은 크기 및 가벼운 무게의 풍력 발전기를 개발하기 위해 노력해 왔다. 고온초전도 풍력발전기는 기존의 풍력 발전기에 비해 부피와 중량을 줄일 수 있기 때문에 풍력 발전시스템에 더 적합하다. 그러나 고온초전도 발전기는 큰 진공 용기 및 계자 코일의 유지 보수가 어려운 문제를 가지고 있다. 이러한 문제는 고온초전도 계자 코일의 모듈화를 통해 해소될 수 있다. 그런데 고온초전도 모듈 코일에는 직류 전류를 전달하기 위한 전류 리드가 필요하며, 이는 큰 열전달 부하를 발생시킨다. 따라서 전류 리드는 전도 및 Joule 열 부하를 줄이기 위해 최적으로 설계되어야 한다. 본 논문에서는 750 kW급 고온초전도 발전기에 대한 모듈 코일의 구조 설계 및 열 해석을 다루었다. 모듈 코일의 전도 및 복사열 해석은 3D 유한요소법 프로그램을 사용하여 분석하였으며, 그 결과 총 열부하는 극저온 냉각장치의 냉각 용량보다 작았다. 본 논문에서 제시한 설계 및 해석결과는 풍력 발전시스템의 초전도 발전기 개발에 효과적으로 활용할 수 있을 것이다.

An optimized condition for corrosion protection of Type 304 Films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution

  • Yoo, Ji-Hong;Ahn, Seung-Ho;Kim, Jung-Gu;Lee, Sang-Yul
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.465-474
    • /
    • 2001
  • Type 304SS coatings were performed at 200$\square$ onto AISI 1045 carbon steel substrate using unbalanced magnetron sputtering (UBMS) with an austenitic AISI 304 stainless steel (SS) target of 100mm diameter. The total deposition pressure in the active Ar gas was 2$\times$10$^{-3}$ Torr. Coatings were done at various target power densities and bias voltages. Chemical compositions of metallic elements of the coatings were measured by energy dispersive X-rays spectroscopy (EDS). The structure and the morphology of Type 304SS coatings were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Corrosion properties of the coated specimens were examined using electrochemical polarization measurements and electrochemical impedance spectroscopy in a deaerated 3.5% NaCl solution. The porosity rate was obtained from a comparison of the dc polarization resistance of the uncoated and coated substrates. Scratch adhesion testing was used to compare the critical loads for different coatings. XRD results showed that the sputtered films exhibit a ferritic b.c.c. $\alpha$-phase. Potentiodynamic polarization curves indicated that all samples had much higher corrosion potential and better corrosion resistance than the bare steel substrate. The corrosion performance increased with increasing power density and the adhesion was enhanced at the bias voltage of -50V. An improvement in the corrosion resistance can be obtained with a better coating adhesion. Finally, an optimized deposition condition for corrosion protection was found as $40W/cm^2$ and -50V.

  • PDF

직접 보상전압 추출기법을 이용하여 고조파전류와 무효전력을 보상하는 3상 4선식 직렬 형 능동전력필터의 제어법 (Three-phase Four-wire Series Active Power Filter Control Strategy for The Compensation of Harmonics and Reactive Power Based-on Direct Compensating Voltage Extraction Method)

  • 김진선;김영석
    • 전력전자학회논문지
    • /
    • 제9권3호
    • /
    • pp.213-221
    • /
    • 2004
  • 최근에, 평활용 직류 커패시터가 설치된 다이오드 정류기가 가전제품 및 교류 운전 장치와 같은 전자 장치에 점점 많이 사용되고 있고, 이러한 부하에 의해서 발생하는 고조파 문제가 점차 중요한 문제로 부각되고 있다. 또한, 3상 4선식 전력 시스템은 상업용 빌딩이나 제조 플랜트 등에 전력을 공급하는 방법으로 많이 사용되고 있는데 이러한 시스템에서는 중성선에 과도한 전류가 흐르게 되고, 중성선 전류는 기본적으로 3고조파 성분으로 중성선 도체 사이즈 선정의 실패나 중성점의 전위를 상승시키거나 변압기의 과열 현상 등을 유발할 수 있다. 이러한 관점에서 본 논문에서는 직접 보상전압 추출기법으로 동작하는 직렬 형 능동 필터를 제안하며, 성능함수 알고리즘의 장점은 게인을 곱하지 않고 보상 전압을 직접 구함으로써, 어떠한 다른 알고리즘보다 보상 전압 계산 방법이 간단하다. 제안된 알고리즘의 타당성을 증명하기 위하여 프로토타입 능동 필터를 제작하여 실험을 수행하였다.

광대역 LC 대역 통과 필터를 부하로 가지는 0.18-μm CMOS 저전력/광대역 저잡음 증폭기 설계 (A 0.18-μm CMOS Low-Power and Wideband LNA Using LC BPF Loads)

  • 신상운;서영호;김창완
    • 한국전자파학회논문지
    • /
    • 제22권1호
    • /
    • pp.76-80
    • /
    • 2011
  • 본 논문에서는 3~5 GHz의 동작 주파수를 가지는 0.18-${\mu}m$ CMOS 저전력/광대역 저잡음 증폭기 구조를 제안한다. 제안하는 광대역 저잡음 증폭기는 광대역 입력 정합, 발룬 기능, 그리고 우수한 노이즈 특성을 얻기 위해 노이즈 제거 회로 구조를 채택하였다. 특히, 2차 LC-대역 통과 필터를 증폭기의 부하로 구현함으로써 기존에 발표된 문헌들보다 최소 전력을 소모하면서 높은 전력 이득과 낮은 잡음 지수를 얻을 수 있었다. 본 논문에서 제안하는 저잡음 증폭기는 1.8 V 공급 전압으로부터 단지 3.94 mA의 전류를 소모하며, 모의 실험 결과, 3~5 GHz UWB 대역에서 전력 이득은 최소 +17 dB 이상, 잡음 지수는 최대 +4 dB 이하, 그리고 입력 IP3는 -15.5 dBm을 가진다.

디젤발전기가 포함된 독립형 마이크로그리드에서의 BESS 제어기법 및 운전모드 연구 (Control and Operating Modes of Battery Energy Storage System for a Stand-Alone Microgrid with Diesel Generator)

  • 조종민;안현성;김지찬;차한주
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.86-93
    • /
    • 2018
  • In this work, control methods and operating modes are proposed to manage standalone microgrid. A standalone microgrid generally consists of two sources, namely, battery energy storage system (BESS) and diesel generator (DG). BESS is the main source that supplies active and reactive power regardless of load conditions, whereas DG functions as an auxiliary power source. BESS operates in a constant voltage constant frequency (CVCF) control, which includes proportional-integral + resonant controller in a parallel structure. In CVCF control, the concept of fundamental positive and negative transformation is utilized to generate a three-phase sinusoidal voltage under imbalanced load condition. Operation modes of a standalone microgrid are divided into three modes, namely, normal, charge, and manual modes. To verify the standalone microgrid along with the proposed control methods, a demonstration site is constructed, which contains 115 kWh lead-acid battery bank, 50 kVA three-phase DC - AC inverter, and 50 kVA DG and controllable loads. In the CVCF control, the total harmonic distortion of output voltage is improved to 1.1% under imbalanced load. This work verifies that the standalone microgrid provides high-quality voltage, and three operation modes are performed from the experimental results.

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.