DOI QR코드

DOI QR Code

풍력 터빈용 750 kW 급 고온초전도 발전기 모듈의 코일 구조 설계 및 열 해석

Structural Design and Thermal Analysis of a Module Coil for a 750 kW-Class High Temperature Superconducting Generator for Wind Turbine

  • 투고 : 2019.01.05
  • 심사 : 2019.03.23
  • 발행 : 2019.04.30

초록

많은 풍력회사들은 큰 용량, 작은 크기 및 가벼운 무게의 풍력 발전기를 개발하기 위해 노력해 왔다. 고온초전도 풍력발전기는 기존의 풍력 발전기에 비해 부피와 중량을 줄일 수 있기 때문에 풍력 발전시스템에 더 적합하다. 그러나 고온초전도 발전기는 큰 진공 용기 및 계자 코일의 유지 보수가 어려운 문제를 가지고 있다. 이러한 문제는 고온초전도 계자 코일의 모듈화를 통해 해소될 수 있다. 그런데 고온초전도 모듈 코일에는 직류 전류를 전달하기 위한 전류 리드가 필요하며, 이는 큰 열전달 부하를 발생시킨다. 따라서 전류 리드는 전도 및 Joule 열 부하를 줄이기 위해 최적으로 설계되어야 한다. 본 논문에서는 750 kW급 고온초전도 발전기에 대한 모듈 코일의 구조 설계 및 열 해석을 다루었다. 모듈 코일의 전도 및 복사열 해석은 3D 유한요소법 프로그램을 사용하여 분석하였으며, 그 결과 총 열부하는 극저온 냉각장치의 냉각 용량보다 작았다. 본 논문에서 제시한 설계 및 해석결과는 풍력 발전시스템의 초전도 발전기 개발에 효과적으로 활용할 수 있을 것이다.

Many companies have tried to develop wind power generators with a larger capacity, smaller size and lighter weight. High temperature superconducting (HTS) generators are more suitable for wind power systems because they can reduce volume and weight compared with conventional generators. However, the HTS generator has problems such as huge vacuum vessel and the difficulty of repairing the HTS field coils. These problems can be overcome through the modularization of the HTS field coil. The HTS module coil require a current leads (CLs) for deliver DC current, which causes a large heat transfer load. Therefore, CLs should be designed optimally for reducing the conduction and Joule heat loads. This paper deals with a structural design and thermal analysis of a module coil for a 750 kW-class HTS generator. The conduction and radiation heat loads of the module coils were analysed using a 3D finite element method program. As a result, the total thermal load was less than the cooling capacity of the cryo-cooler. The design results can be effectively utilized to develop a superconducting generator for wind power generation systems.

키워드

SOJBB3_2019_v24n2_33_f0001.png 이미지

Fig. 1 Design of the 750 kW-class HTS generator

SOJBB3_2019_v24n2_33_f0002.png 이미지

Fig. 2 Structural design of the HTS module coil

SOJBB3_2019_v24n2_33_f0003.png 이미지

Fig. 3 Structural design of the CL

SOJBB3_2019_v24n2_33_f0004.png 이미지

Fig. 4 Heat invasion of the CL

SOJBB3_2019_v24n2_33_f0005.png 이미지

Fig. 5 Temperature distributions of (a) one CL and (b) CLs with HTS module coil

SOJBB3_2019_v24n2_33_f0006.png 이미지

Fig. 6 Temperature distribution of the (a) HTS module coil and (b) cryostat

Table 1 Specifications of the 750 kW-class HTS generator

SOJBB3_2019_v24n2_33_t0001.png 이미지

Table 2 The total heat load of the HTS module coil

SOJBB3_2019_v24n2_33_t0002.png 이미지

참고문헌

  1. Young, G.P., Woo, S.L., Jeyull, L., Seunghyun, S., Young, J.H., Yoon, D.C., and Tae, K.K., "Operational characteristics of HTS coils with flux diverters in semipersistent mode under alternating magnetic field," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, Art. No. 5204105, 2016.
  2. Sung, H.J., Badcock, R.A., Jiang, Z., Choi, J., Park, M., and Yu, I.K., "Design and heat load analysis of a 12 MW HTS wind power generator module employing a brushless HTS exciter," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, Art. No. 5205404, 2016.
  3. Sung, H.J., Go, B.S., Jiang, Z., Park, M., and Yu, I.K., "Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter," Physica C: Superconductivity and Its Applications, Vol. 530, pp. 133-137, 2016. https://doi.org/10.1016/j.physc.2016.05.007
  4. Tuvdensuren, O., Dao, V.Q., Le, T.T., Go, B.S., Park, M., and Yu, I.K., "Design of a current lead for a large scale superconducting wind power generator," Korean Institute of Electrical Engineers 48th Conference(KIEE) pp. 1065-1066, 2017.
  5. Sung, H.J., Badcock, R.A., Go, B.S., Park, M., Yu, I.K., and Jiang, Z., "Desing of a 12 MW HTS wind power generator including a flux pump exciter," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 3, Art. No. 5206205, 2016.
  6. Shafaie, R., and Kalantar, M., "Design of a 10 MW class wind turbine HTS synchronous generator with optimized field winding," IEEE Transactions on Applied Superconductivity, Vol. 23, No. 4, Art. No. 5202307, 2013.
  7. Go, B.S., Sung, H.J., Lim, H.S., Park, M., and Yu, I.K., "Design of a large scale HTS generator module coil considering electromagnetic forces," Korean Institute of Electrical Engineers 47th Conference (KIEE), pp. 677-678, 2016.
  8. Tuvdensuren, O., Sung, H.J., Go, B.S., Park, M., and Yu, I.K., "Structural design and heat load analysis of a flux pump-based HTS module coil for a large scale wind power generator," Journal of Physics: Conference Series, Vol. 1054, No. 1, Art. No. 012084, 2018.
  9. Sung, H.J., Park, M., Go, B.S., and Yu, I.K., "A Study on the required performance of a 2G HTS wire for HTS wind power generators," Superconductor Science and Technology, Vol. 29, Art. No. 054001, 2016.
  10. Le. T.T., Sung, H.J., Tuvdensuren, O., Park, M., and Yu, I.K., "Thermal design of a superconducting module for a 12 MW wind power generator," Korean Institute of Electrical Engineers 48th Conference (KIEE), pp. 1100-1101, 2017.
  11. Dao, V.Q., Kim, T., Sung, H.J., Choi, J., Park, M., and Yu, I.K., "Thermal optimization of current leads for HTS DC reactor magnet," International Symposium on Innovation in Information Technology and Application (ISIITA), pp. 17-21, 2017.
  12. Tuvdensuren, O., Sung, H.J., Park, M., and Yu, I.K., "Thermal analysis of a 1 MW superconducting motor for ship propulsion," Korean Institute of Electrical Engineers 49th Conference (KIEE), pp. 841-842, 2018.

피인용 문헌

  1. Conceptual Design of an HTS Motor for Future Electric Aircraft vol.25, pp.5, 2019, https://doi.org/10.9723/jksiis.2020.25.5.049