• Title/Summary/Keyword: dataflow

Search Result 40, Processing Time 0.026 seconds

Static Type Assignment for SSA Form in CTOC

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • Although the Java bytecode has numerous advantages, it also has certain shortcomings such as its slow execution speed and difficulty of analysis. In order to overcome such disadvantages, a bytecode analysis and optimization must be performed. The control flow of the bytecode should be analyzed; next, information is required regarding where the variables are defined and used to conduct a dataflow analysis and optimization. There may be cases where variables with an identical name contain different values at different locations during execution, according to the value assigned to a given variable in each location. Therefore, in order to statically determine the value and type, the variables must be separated according to allocation. In order to achieve this, variables can be expressed using a static single assignment form. After transformation into a static single assignment form, the type information of each node expressed by each variable and expression must be configured to perform a static analysis and optimization. Based on the basic type information, this paper proposes a method for finding the related equivalent nodes, setting nodes with strong connection components, and efficiently assigning each node type.

Design and Implementation of Algorithms for the Motion Detection of Vehicles using Hierarchical Motion Estimation and Parallel Processing (계층화 모션 추정법과 병렬처리를 이용한 차량 움직임 측정 알고리즘 개발 및 구현)

  • 강경훈;정성태;이상설;남궁문
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1189-1199
    • /
    • 2003
  • This paper presents a new method for the motion detection of vehicles using hierarchical motion estimation and parallel processing. It captures the road image by using a CMOS sensor. It divides the captured image into small blocks and detects the motion of each block by using a block-matching method which is based on a hierarchical motion estimation and parallel processing for the real-time processing. The parallelism is achieved by using tile pipeline and the data flow technique. The proposed method has been implemented by using an embedded system. The proposed block matching algorithm has been implemented on PLDs(Programmable Logic Device) and clustering algorithm has been implemented by ARM processor. Experimental results show that the proposed system detects the motion of vehicles in real-time.

  • PDF

Signal Processing Logic Implementation for Compressive Sensing Digital Receiver (압축센싱 디지털 수신기 신호처리 로직 구현)

  • Ahn, Woohyun;Song, Janghoon;Kang, Jongjin;Jung, Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-446
    • /
    • 2018
  • This paper describes the real-time logic implementation of orthogonal matching pursuit(OMP) algorithm for compressive sensing digital receiver. OMP contains various complex-valued linear algebra operations, such as matrix multiplication and matrix inversion, in an iterative manner. Xilinx Vivado high-level synthesis(HLS) is introduced to design the digital logic more efficiently. The real-time signal processing is realized by applying dataflow architecture allowing functions and loops to execute concurrently. Compared with the prior works, the proposed design requires 2.5 times more DSP resources, but 10 times less signal reconstruction time of $1.024{\mu}s$ with a vector of length 48 with 2 non-zero elements.

A Validation Technique for Process Component Composition in the Component-Based Development Process (컴포넌트 기반 개발에서 처리 부품들의 합성을 검증하는 방안)

  • Ju, Bok-Gyu;Kim, Yeong-Cheol
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.691-698
    • /
    • 2001
  • Component-based development methods are regarded as one of the most important tools for us to cope with ever-increasing software complexity and, at the same time, to improve productivity in software development. This paper presents how to generate test-cases for integrated software from those of member components and how to validate composition of components, by the analysis of domain relations of components. This paper shows the applicability of the proposed technique by the real experiment. This study is based on the dataflow systems architecture and process components, and the technique developed here is an application of domain testing technique.

  • PDF

A GPU scheduling framework for applications based on dataflow specification (데이터 플로우 기반 응용들을 위한 GPU 스케줄링 프레임워크)

  • Lee, Yongbin;Kim, Sungchan
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1189-1197
    • /
    • 2014
  • Recently, general purpose graphic processing units(GPUs) are being widely used in mobile embedded systems such as smart phone and tablet PCs. Because of architectural limitations of mobile GPGPUs, only a single program is allowed to occupy a GPU at a time in a non-preemptive way. As a result, it is difficult to meet performance requirements of applications such as frame rate or response time if applications running on a GPU are not scheduled properly. To tackle this difficulty, we propose to specify applications using synchronous data flow model of computation such that applications are formed with edges and nodes. Then nodes of applications are scheduled onto a GPU unlike conventional scheduling an application as a whole. This approach allows applications to share a GPU at a finer granularity, node (or task)-level, providing several benefits such as eliminating need for manually partitioning applications and better GPU utilization. Furthermore, any scheduling policy can be applied in response to the characteristics of applications.

A Multithreaded Architecture for the Efficient Execution of Vector Computations (벡타 연산을 효율적으로 수행하기 위한 다중 스레드 구조)

  • Yun, Seong-Dae;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.974-984
    • /
    • 1995
  • This paper presents a design of a high performance MULVEC (MULtithreaded architecture for the VEctor Computations), as a building block of massively parallel Processing systems. The MULVEC comes from the synthesis of the dataflow model and the extant super sclar RISC microprocesso r. The MULVEC reduces, using status fields, the number of synchronizations in the case of repeated vector computations within the same thread segment, and also reduces the amount of the context switching, network traffic, etc. After be nchmark programs are simulated on the SPARC station 20(super scalar RISC microprocessor)the performance (execution time of programs and the utilization of processors) of MULVEC and the performance(execution time of a program) of *Taccording the different numbers of node are analyzed. We observed that the execution time of the program in MULVEC is faster than that in * T about 1-2 times according the number of nodes and the number of the repetitions of the loop.

  • PDF

A Design Methodology of Relational Database Based on Dataflow Diagram (자료흐름도에 기반한 관계형 데이터베이스의 설계방법)

  • 엄윤섭;권중장;정희석;김창동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.615-618
    • /
    • 2003
  • The design process of a relational database system consists of requirement analysis, conceptual design using ER diagram, logical design, and physical design. In logical design process, the conceptual schema is transformed to relational schema, and relational schema is normalized. This traditional design process is hard to applied in real database design process, since there is an ambiguity in conceptual design process. In this paper, we suggest a new design process, which provides more structural design steps by removing the conceptual design process. In new approach, we produce the data flow diagram by the structural methodology. From the attributes in the data store of data flow diagram, we construct relational table schema, and we normalize relational schema. Finally we produced table relationship diagram in order to figure out relationships between tables.

  • PDF

A Register-Based Caching Technique for the Advanced Performance of Multithreaded Models (다중스레드 모델의 성능 향상을 위한 가용 레지스터 기반 캐슁 기법)

  • Go, Hun-Jun;Gwon, Yeong-Pil;Yu, Won-Hui
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.107-116
    • /
    • 2001
  • A multithreaded model is a hybrid one which combines locality of execution of the von Neumann model with asynchronous data availability and implicit parallelism of the dataflow model. Much researches that have been made toward the advanced performance of multithreaded models are about the cache memory which have been proved to be efficient in the von Neumann model. To use an instruction cache or operand cache, the multithreaded models must have cache memories. If cache memories are added to the multithreaded model, they may have the disadvantage of high implementation cost in the mode. To solve these problems, we did not add cache memory but applied the method of executing the caching by using available registers of the multithreaded models. The available register-based caching method is one that use the registers which are not used on the execution of threads. It may accomplish the same effect as the cache memory. The multithreaded models can compute the number of available registers to be used during the process of the register optimization, and therefore this method can be easily applied on the models. By applying this method, we can also remove the access conflict and the bottleneck of frame memories. When we applied the proposed available register-based caching method, we found that there was an improved performance of the multithreaded model. Also, when the available-register-based caching method is compared with the cache based caching method, we found that there was the almost same execution overhead.

  • PDF

Task-to-Tile Binding Technique for NoC-based Manycore Platform with Multiple Memory Tiles (복수 메모리 타일을 가진 NoC 매니코어 플랫폼에서의 태스크-타일 바인딩 기술)

  • Kang, Jintaek;Kim, Taeyoung;Kim, Sungchan;Ha, Soonhoi
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.163-176
    • /
    • 2016
  • The contention overhead on the same channel in an NoC architecture can significantly increase a communication delay due to the simultaneous communication requests that occur. To reduce the overall overhead, we propose task-to-tile binding techniques for an NoC-based manycore platform, whereby it is assumed that the task mapping decision has already made. Since the NoC architecture may have multiple memory tiles as its size grows, memory clustering is used to balance the load of memory by making applications access different memory tiles. We assume that the information on the communication overhead of each application is known since it is specified in a dataflow task graph. Using this information, this paper proposes two heurisitics that perform binding of multiple tasks at once based on a proper memory clustering method. Experiments with an NoC simulator prove that the proposed heurisitic shows performance gains that are 25% greater than that of the previous binding heuristic.

MPSoC Design Space Exploration Based on Static Analysis of Process Network Model (프로세스 네트워크 모델의 정적 분석에 기반을 둔 다중 프로세서 시스템 온 칩 설계 공간 탐색)

  • Ahn, Yong-Jin;Choi, Ki-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.7-16
    • /
    • 2007
  • In this paper, we introduce a new design environment for efficient multiprocessor system-on-chip design space exploration. The design environment takes a process network model as input system specification. The process network model has been widely used for modeling signal processing applications because of its excellent modeling power. However, it has limitation in predictability, which could cause severe problem for real time systems. This paper proposes a new approach that enables static analysis of a process network model by converting it to a hierarchical synchronous dataflow model. For efficient design space exploration in the early design step, mapping application to target architectures has been a crucial part for finding better solution. In this paper, we propose an efficient mapping algorithm. Our mapping algorithm supports both single bus architecture and multiple bus architecture. In the experiments, we show that the automatic conversion approach of the process network model for static analysis is performed successfully for several signal processing applications, and show the effectiveness of our mapping algorithm by comparing it with previous approaches.