• 제목/요약/키워드: data weighting

검색결과 645건 처리시간 0.027초

Retrieval of High-Resolution Grid Type Visibility Data in South Korea Using Inverse Distance Weighting and Kriging

  • Kang, Taeho;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • 제37권1호
    • /
    • pp.97-110
    • /
    • 2021
  • Fog can cause large-scale human and economic damages, including traffic systems and agriculture. So, Korea Meteorological Administration is operating about 290 visibility meters to improve the observation level of fog. However, it is still insufficient to detect very localized fog. In this study, high-resolution grid-type visibility data were retrieved from irregularly distributed visibility data across the country. To this end, three objective analysis techniques (Inverse Distance Weighting (IDW), Ordinary Kriging (OK) and Universal Kriging (UK)) were used. To find the best method and parameters, sensitivity test was performed for the effective radius, power parameter and variogram model that affect the level of objective analysis. Also, the effect of data distribution characteristics (level of normality) on the performance level of objective analysis was evaluated. IDW showed a relatively high level of objective analysis in terms of bias, RMSE and correlation, and the performance is inversely proportional to the effective radius and power parameter. However, the two Krigings showed relatively low level of objective analysis, in particular, greatly weakened the variability of the variables, although the level of output was different depending on the variogram model used. As the level of objective analysis is greatly influenced by the distribution characteristics of data, power, and models used, care should be taken when selecting objective analysis techniques and parameters.

Evaluating Rebuilding Priority to Improve Residential Environment Using Spatial Weighting: A Case Study on Shinchun-Dong of Daegu Metropolitan City (공간 가중치를 이용한 주거환경 개선지역 우선순위평가: 대구광역시 신천동을 사례로)

  • Son, Seung-Hooi;Park, Ki-Heon;Um, Jung-Sup
    • Journal of the Korean Geographical Society
    • /
    • 제43권6호
    • /
    • pp.961-980
    • /
    • 2008
  • It is usual to prioritize the blocks to rearrange residential environment by the responsible officer's intuition or a few specialist's experienced knowledge. The aim of this research was to evaluate rebuilding priority in the context of spatially weighted framework integrating resident's view. The spatial weighting for the variables related to evaluation of dwelling environment was derived from AHP (Analytic Hierarchy Process) approach through the analysis of resident's view. An empirical study for a case study site has been conducted to confirm the validity for the spatial weighting. The spatial weighting has frequently influenced in changing the rebuilding priority and was identified as the important predictor for the improvement sites of dwelling environment. The spatially weighted analysis made it possible to identify area-wide patterns of rebuilding priority area subject to many different type of thematic variables, which cannot be acquired by traditional field sampling. The spatially weighting derived by integrating various formats of spatial data into a comprehensive GIS database in particular, was ideally suited to displaying the objective distribution patterns for rebuilding priority. The result of this study would play a crucial role in dealing with public complaints for rebuilding priority since it could provide objective evidences in accordance with spatial weighting.

Analysis of Installation Status and Application of GIS for Preliminary Risk Assessment of Underground Storage Tanks in Chuncheon City (춘천시의 지하 저장 탱크의 예비적 위해성 평가를 위한 설치 현황 분석 및 지리정보시스템의 적용)

  • Kim, Joon-Hyun;Han, Young-Han;Lee, Jong-Chun;Kwon, Young-Sung;Lee, Kwang-Yeon
    • Journal of Industrial Technology
    • /
    • 제22권A호
    • /
    • pp.127-135
    • /
    • 2002
  • In this study, the preliminary risk assessment for the underground storage tanks(UST) in Chunchon city was implemented using the geographical information system(GIS). The estimation variables, such as the installation year, storage capacity, the distances from streams, and from groundwater pumping wells, were selected to estimate the relative risk levels. The weighting factors were given to all the estimation variables. Cumulative scores were induced by the combination of all the scores of the corresponding variables using the buffering technique and the overlay analysis in ArcView. Using the these process, the relative risk level of each UST was estimated. Some sites in this study are simplified and reduced because the number of useable data are limited or too enormous. Thus the selection of the comprehensive estimation variables and the proper weighting values are required for the future study. The methodology in this study could be served not only for the preliminary risk assessment of UST but also for the selection of the proper location of new and old UST. And, it can be used for the effective management system of UST.

  • PDF

Optimum Design of a Pin-Fins Type Heat Sink Using the CFD and Mathematical Optimization

  • Park, Kyoung-Woo;Oh, Park-Kyoun;Lim, Hyo-Jae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권2호
    • /
    • pp.71-82
    • /
    • 2005
  • The shape of $7\times7$ pin-fins heat sink is optimized numerically to obtain the minimum pressure drop and thermal resistance. In this study, the fin height (h), fin width (w), and fan-to-heat sink distance (c) are chosen as the design variables and the pressure drop $({\Delta}P)$ and thermal resistance $(\theta_j)$ are adopted as the objective functions. To obtain the optimum design values, we used the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: W=4.653 mm, h=59.215mm, and c=2.667mm. The objective functions corresponding to the optimal design are calculated as ${\Delta}P=6.82$ Pa and $(\theta_j)=0.56K/W$. The Pareto solutions are also presented for various weighting coefficients and they will offer very useful data to design the pin-fins heat sink.

Localization of Mobile Robot Based on Radio Frequency Identification Devices (RFID를 이용한 이동로봇의 위치인식기술)

  • Lee Hyun-Jeong;Choi Kyu-Cheon;Lee Min-Cheol;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제12궈1호
    • /
    • pp.41-46
    • /
    • 2006
  • Ubiquitous location based services, offer helpful services anytime and anywhere by using real-time location information of objects based on ubiquitous network. Particularly, autonomous mobile robots can be a solution for various applications related to ubiquitous location based services, e.g. in hospitals, for cleaning, at airports or railway stations. However, a meaningful and still unsolved problem for most applications is to develop a robust and cheap positioning system. A typical example of position measurements is dead reckoning that is well known for providing a good short-term accuracy, being inexpensive and allowing very high sampling rates. However, the measurement always has some accumulated errors because the fundamental idea of dead reckoning is the integration of incremental motion information over time. The other hand, a localization system using RFID offers absolute position of robots regardless of elapsed time. We construct an absolute positioning system based on RFID and investigate how localization technique can be enhanced by RFID through experiment to measure the location of a mobile robot. Tags are placed on the floor at 5cm intervals in the shape of square in an arbitrary space and the accuracy of position measurement is investigated . To reduce the error and the variation of error, a weighting function based on Gaussian function is used. Different weighting values are applied to position data of tags since weighting values follow Gaussian function.

Indoor Position Detection Algorithm Based on Multiple Magnetic Field Map Matching and Importance Weighting Method (다중 자기센서를 이용한 실내 자기 지도 기반 보행자 위치 검출 정확도 향상 알고리즘)

  • Kim, Yong Hun;Kim, Eung Ju;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제68권3호
    • /
    • pp.471-479
    • /
    • 2019
  • This research proposes a indoor magnetic map matching algorithm that improves the position accuracy by employing multiple magnetic sensors and probabilistic candidate weighting function. Since the magnetic field is easily distorted by the surrounding environment, the distorted magnetic field can be used for position mapping, and multiple sensor configuration is useful to improve mapping accuracy. Nevertheless, the position error is likely to increase because the external magnetic disturbances have repeated pattern in indoor environment and several points have similar magnetic field distortion characteristics. Those errors cause large position error, which reduces the accuracy of the position detection. In order to solve this problem, we propose a method to reduce the error using multiple sensors and likelihood boundaries that uses human walking characteristics. Also, to reduce the maximum position error, we propose an algorithm that weights according to their importance. We performed indoor walking tests to evaluate the performance of the algorithm and analyzed the position detection error rate and maximum distance error. From the results we can confirm that the accuracy of position detection is greatly improved.

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Estimation of Deterioration Assessment for Weighting Factors in Pipes of Water Supply Systems Using Analytic Hierarchy Process (계층적분석과정을 이용한 상수관로의 노후도 평가를 위한 항목별 가중치 산정)

  • Kim, Eung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제8권5호
    • /
    • pp.15-21
    • /
    • 2008
  • The purpose of this study is to estimate deterioration assessment for weighting factors in pipe network for which each local selfgovernment takes rehabilitation and replacement work at present time. Deterioic hierarchy process(AHP), calculates the weighting factors. The appropriate marks matrix of sixteen deterioration factors are made for the precise decision standard of pipe condition through the result of this analysis. The marks matrix of sixteen deterioration factors can solve the complicated decision making problems of pipe rehabilitation workration factors in the pipe network might be influenced by local factors, such as province, location, or land use, in water supply systems. In this study, the sixteen deterioration factors are determined suitable for domestic situation based on the pipe deterioration factor data inside and outside of the country. Also, we select persons in charge of calculating the detail weighting factors and do survey about important level of each deterioration factors. Delphi method, a question survey method applying the analyts.

Evaluation of Regional Rural Amenity Values on Living and Tourism Resource Characteristics (생활 및 관광자원으로서의 특성을 고려한 농촌어메니티의 지역별 수준평가)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Bae, Seung-Jong
    • Journal of Korean Society of Rural Planning
    • /
    • 제14권4호
    • /
    • pp.21-32
    • /
    • 2008
  • The rural area has kept traditions and green open spaces highlighted in these days since the life quality elevated. Institute of Rural Resources Development has been conducting nation-wide survey project for rural amenity resources to construct the databases of rural amenity distribution and richness. Using surveyed data from the project, this study was implemented to evaluate rural amenity values based on SAW (Simple Additive Weighting) method considering two aspects including living and tourism amenity. For defining the set of evaluation criteria, the rural amenity resources were classified into almost intact nature resources(natural resources), interaction between nature and man resources(cultural resources) and man-made resources(social resources). The weighting values of the criteria were evaluated from the step wise pair-comparison results by AHP(Analytic Hierarchy Process) method. In the results of weighting values related to living amenity, social resources was the hightest ranked criterion (0.512), followed by cultural resources (0.245) and natural resources (0.243). On the other hand, the results related to tourism amenity was that weighting values of natural resources, cultural resources and social resources were 0.481, 0.340 and 0.179, respectively. The two aspects evaluation methods was applied to the selected 18 areas (Myeon administration level) in Chungcheongbuk Do. The results demonstrated the differences of amenity values for living conditions and tourism conditions and could be used for prioritizing rural amenity planning.

Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics (데이터 분포특성을 이용한 다목적함수 최적화 알고리즘 개발)

  • Hwang, In-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권12호
    • /
    • pp.1793-1803
    • /
    • 2010
  • The weighting method and goal programming require weighting factors or target values to obtain a Pareto optimal solution. However, it is difficult to define these parameters, and a Pareto solution is not guaranteed when the choice of the parameters is incorrect. Recently, the Mahalanobis Taguchi System (MTS) has been introduced to minimize the Mahalanobis distance (MD). However, the MTS method cannot obtain a Pareto optimal solution. We propose a function called the skewed Mahalanobis distance (SMD) to obtain a Pareto optimal solution while retaining the advantages of the MD. The SMD is a new distance scale that multiplies the skewed value of a design point by the MD. The weighting factors are automatically reflected when the SMD is calculated. The SMD always gives a unique Pareto optimal solution. To verify the efficiency of the SMD, we present two numerical examples and show that the SMD can obtain a unique Pareto optimal solution without any additional information.