• Title/Summary/Keyword: data space

Search Result 10,094, Processing Time 0.037 seconds

REAL-TIME TRAJECTORY ESTIMATION OF SPACE LAUNCH VEHICLE USING EXTENDED KALMAN FILTER AND UNSCENTED KALMAN FILTER (확장칼만필터와 UNSCENTED 칼만필터를 이용한 우주발사체의 실시간 궤적추정)

  • Baek, Jeong-Ho;Park, Sang-Young;Park, Eun-Seo;Choi, Kyu-Hong;Lim, Hyung-Chul;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.501-512
    • /
    • 2005
  • This research supposed when a fictitious KSIV-I space launch vehicle launches from NARO space center. This compared and analyzed the results from real-time trajectory estimation using the Extended Kalman Filter and the Unscented Kalman Filter. A virtual trajectory and observation data are generated for the fictitious KSLV-I and three measurement radars. The performances of both Otters are compared for several simulations with small initial errors, large initial errors, 20Hz and 10Hz data rate. The results show that the Unscented Kalman Filter yields faster convergence and more accurate than the Extended Kalman Filter for the cases with larger initial error and slower data rate conditions.

Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

  • Hwang, Junga;Kim, Hyang-Pyo;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.329-336
    • /
    • 2012
  • Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth's geomagnetic filed by space weather, we use the international quiet days' data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components' quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation's amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth's atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

Analysis of Precise Orbit Determination of the KARISMA Using Optical Tracking Data of a Geostationary Satellite (정지궤도위성의 광학 관측데이터를 이용한 KARISMA의 정밀궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.661-673
    • /
    • 2014
  • In this paper, a precise orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute), in which optical tracking data of a geostationary satellite was used. The real optical tracking data provided by ESA(European Space Agency) for the ARTEMIS geostationary satellite was used. And orbit determination error was approximately 420 m compared to that of the ESA's orbit determination result from the same optical tracking data. In addition, orbit prediction was conducted based on the orbit determination result with optical tracking data for 4 days, and the position error for the orbit prediction during 3 days was approximately 500~600 m compared to that of ESA's result. These results imply that the performance of the KARISMA's orbit determination function is suitable to apply to the collision risk assessment for the space debris.

A Study on Comparison of Massive Data Recording Equipments for VLBI Radio Observation Data (VLBI 전파 관측데이터를 위한 대용량 기록장치 비교에 관한 연구)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.125-132
    • /
    • 2018
  • KVN(Korean VLBI Network) introduced the Mark6 system of the MIT haystack observatory as a recorder for data recording up to 32 Gbps for VLBI(Very Long Baseline Interferometry) observation. The Mark6 recorder can record data at up to 32Gbps when two systems and 64 HDDs are installed. However, because of the unique recording method that is characteristic of Mark6, we are introducing a large amount of data into a virtual file system, or using a general RAID method, which causes data loss when reading and transferring files at the highest recording speed or file system have. The Flexbuff system, a software recorder developed by JIVE(Joint Institute for VLBI ERIC), can be configured to operate as a data recorder through RAID configuration and network upgrades. In particular, when installed in the Mark6 system, it can record VLBI data at a maximum speed of 32 Gbps with less loss of data compared to the existing Mark6 by utilizing Mark6 resources well. In this paper, we propose that the existing Mark6 system can be operated as Mark6-Flexbuff by installing jive5ab software, and it is verified through experiment that it can be effectively used for VLBI observation operation through data recording test.

DEVELOPMENT OF IONOSPHERIC TOMOGRAPHY MODEL USING GPS (GPS를 이용한 전리층 토모그래피 모델 개발)

  • Choi Byung-Kyu;Park Jong-Uk;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • We produced the electron density distribution in the ionosphere over South Korea using the data from nine permanent GPS (Global Positioning System) stations which have been operated by KASI (Korea Astronomy and Space Science Institute). The dual-frequency GPS receiver data was used to precisely estimate the electron density in the ionosphere and we obtained the precise electron density profile based on two-dimensional TEC (Total Electron Contents). We applied ART (Algebraic Reconstruction Technique), which is one of the most commonly used algorithms to develop the tomography model. This paper presented the electron density distribution over South Korea with time. We compared with the electron density profiles derived from the GPS tomography reconstruction, Ionosonde measurement data obtained by observations, and the IRI-2001 values. As a result, the electron density profile by GPS reconstruction was in excellent agreement with the electron density profile obtained by Ionosonde measurement data.

CONSTRUCTION OF DATABASE FOR THE DIGITIZED SKY SURVEY I DATA (DIGITIZED SKY SURVEY I 자료의 검색 DB 구축)

  • Sung, Hyun-Il;Sang, Jian;Kim, Sang-Chul;Kim, Bong-Gyu;Yim, In-Sung;Ahn, Young-Suk;Sohn, Sang-Mo-Tony;Yang, Hong-Jin
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.55-62
    • /
    • 2005
  • The First Generation Digitized Sky Survey (DSS-I) is a collection of digitized photographic atlases of the night sky taken from the Palomar Observatory (northen sky) and the Anglo-Australian Observatory (southern sky). DSS-I is widely used by the astronomical community for a number of applications including object cross-identification and astrometry. However, accessing and retrieving the actual images are nontrivial owing to the huge size (> 60 GB) of the dataset. To facilitate retrieval process of DSS-I data for the public, Korean Astronomical Data Center (KADC) developed a web application that provides not only data retrieval but also visualization functions. The web application consists of several modules developed using Java Applet, Jave Servlet, and JaveServer Pages (JSP) technologies. It allows users to retrieve images efficiently in various formats such as FITS, JPEG, GIF, and TIFF, and also offers an interactive visulization tool, ImgViewer, for displaying/analyzing FITS images. To use the web application, users require a Java-enabled web browser.

Maximizing the Probability of Detecting Interstellar Objects by using Space Weather Data (우주기상 데이터를 활용한 성간물체 관측 가능성의 제고)

  • Kwon, Ryun Young;Kim, Minsun;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2021
  • Interstellar objects originate from other stellar systems. Thus, they contain information about the stellar systems that cannot be directly explored; the information includes the formation and evolution of the stellar systems and the possibility of life. The examples observed so far are 1l/Oumuamua in 2017 and 2l/Borisov in 2019. In this talk, we present the possibility of detecting interstellar objects using the Heliospheric Imagers designed for space weather research and forecasting by observing solar wind in interplanetary space between the Sun and Earth. Because interstellar objects are unpredictable events, the detection requires observations with wide coverage in spatial and long duration in temporal. The near-real time data availability is essential for follow-up observations to study their detailed properties and future rendezvous missions. Heliospheric Imagers provide day-side observations, inaccessible by traditional astronomical observations. This will dramatically increase the temporal and spatial coverage of observations and also the probability of detecting interstellar objects visiting our solar system, together with traditional astronomical observations. We demonstrate that this is the case. We have used data taken from Solar TErrestrial RElation Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) HI-1. HI-1 is off-pointed from the Sun direction by 14 degrees with 20 degrees of the field of view. Using images observed from 2007 to 2019, we have found a total of 223 small objects other than stars, galaxies, or planets, indicative of the potential capability to detect interstellar objects. The same method can be applied to the currently operating missions such as the Parker Solar Probe and Solar Orbiter and also future L5 and L4 missions. Since the data can be analyzed in near-real time due to the space weather purposes, more detailed properties can be analyzed by follow-up observations in ground and space, and also future rendezvous missions. We discuss future possible rendezvous missions at the end of this talk.

  • PDF

The Extraction of End-Pixels in Feature Space for Remote Sensing Data and Its Applications

  • YUAN Lu;SUN Wei-dong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.136-139
    • /
    • 2004
  • The extraction of 'end-pixels' (i.e. end-members) aims to quantify the abundance of different materials in a single pixel, which becomes popular in the subpixel analysis for hyperspectral dataset. In this paper, we present a new concept called 'End-Pixel of Features (EPF)' to extends the concept of end-pixels for multispectral data and even panchromatic data. The algorithm combines the advantages of previous simplex and clustering methods to search the EPFs in the feature space and reduce the effects of noise. Some experimental results show that, the proposed methodology can be successfully used to hyperspectral data and other remote sensing data.

  • PDF

USING REMOTELY SENSED DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHAIYI PLAIN

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.422-425
    • /
    • 2007
  • Traditionally, surface energy fluxes are obtained by model simulations or empirical equations with auxiliary meteorological data. These methods may not effectively represent the surface heat fluxes in a regional scale due to scene variability. On the other hand, remote sensing has the advantage to acquire data of a large area in an instantaneous view. The remotely sensed data can be further used to retrieve surface radiation and heat fluxes over a large area. In this study, the airborne and satellite images in conjunction with meteorological data and ground observations were used to estimate the surface heat fluxes over Taiwan's Chaiyi Plain. The results indicate that surface heat fluxes can be properly determined from both airborne and satellite images. The correlation coefficient of surface heat fluxes with in situ corresponding observations is over 0.60. We also observe that the remotely sensed data can efficiently provide a long term monitoring of surface heat fluxes over Taiwan's Chaiyi Plain.

  • PDF

An Efficient Visualization Technique of Large-Scale Nodes Structure with Linked Information

  • Mun Su-Youl;Ha Seok-Wun
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.49-55
    • /
    • 2005
  • This study is to suggest a visualization technique to display the relations of associated data in an optimal way when trying to display the whole data on a limited space by dealing with a large amount of data with linked information. For example, if you track an IP address through several steps and display the data on a screen, or if you visualize the human gene information on a 3-dimensional space, then it becomes even easier to understand the data flow in such cases. In order to simulate the technique given in this study, the given algorithm was applied to a large number of nodes made in a random fashion to optimize the data and we visually observed the result. According to the result, the technique given in this study is more efficient than any previous method in terms of visualization and utilizing space and allows to more easily understand the whole structure of a node because it consists of sub-groups.