• Title/Summary/Keyword: data error

Search Result 9,471, Processing Time 0.036 seconds

A Study on Reliability and Training of Face-Bow Transfer Procedure (안궁의 신뢰성과 학습효과에 관한 연구)

  • So, Woong-Seup;Choi, Dae-Kyun;Kwon, Kung-Rock;Lee, Seok-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.297-308
    • /
    • 2003
  • Face-bow is used to transfer models to the articulator in diagnosing the patient or treating problems associated with occlusion. However, there have been few reports on the reliability of the face-bow procedure and the relationship between the experience of the operator and the reliability of the face-bow procedure. The purposes of this study are to examine the reliability of the face-bow procedure and to evaluate whether the face-bow transferring has any training effect. Nine dentists working at M hospital conducted a face-bow transfer in one patient having a normal dentition and interdental relationship. The procedure was done two times a week for four weeks. The maxillary model was mounted to the articulator every time, then the landmarks on the maxillary right first molar, the maxillary left central incisor, and the maxillary left first molar were measured with a special three-dimensional instrument. These data were input into a computer, and evaluated statistically. The results were as follows ; 1. When examined with ANOVA test, the results were p=0.2040 in maxillary right first molar, p=0.0578 in maxillary left incisor, and p=0.1433 in maxillary left first molar. There was no significant(0< $p{\leq}0.05$). 2. Training 1) The correlation coefficient between trial and rejection was -0.578 when analyzed with T-distribution. The more we tried, the less errors we found. 2) When the S.D. of the first three trials was compared to the S.D. of the last three trials in face-bow transfer, the results showed that the former was larger than the latter in thirty-nine times, and the latter was larger than the former in fifteen times. The more we tried face-bow transfer, the less errors we found. 3. When the S.D. of x, y, z coordinates were examined, the S.D. of x coordinates had the largest measurement in five times, the S.D. of y coordinates had the largest measurement in four times, and the S.D. of z coordinates had the largest measurement in nine times. The possibility which the error can occur in z coordinate was the highest.

A High Speed Block Turbo Code Decoding Algorithm and Hardware Architecture Design (고속 블록 터보 코드 복호 알고리즘 및 하드웨어 구조 설계)

  • 유경철;신형식;정윤호;김근회;김재석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.97-103
    • /
    • 2004
  • In this paper, we propose a high speed block turbo code decoding algorithm and an efficient hardware architecture. The multimedia wireless data communication systems need channel codes which have the high-performance error correcting capabilities. Block turbo codes support variable code rates and packet sizes, and show a high performance due to a soft decision iteration decoding of turbo codes. However, block turbo codes have a long decoding time because of the iteration decoding and a complicated extrinsic information operation. The proposed algorithm using the threshold that represents a channel information reduces the long decoding time. After the threshold is decided by a simulation result, the proposed algorithm eliminates the calculation for the bits which have a good channel information and assigns a high reliability value to the bits. The threshold is decided by the absolute mean and the standard deviation of a LLR(Log Likelihood Ratio) in consideration that the LLR distribution is a gaussian one. Also, the proposed algorithm assigns '1', the highest reliable value, to those bits. The hardware design result using verilog HDL reduces a decoding time about 30% in comparison with conventional algorithm, and includes about 20K logic gate and 32Kbit memory sizes.

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

BER performance analysis of successive interference cancellation(SIC) algorithm for W-CDMA HSDPA receiver (W-CDMA HSDPA수신기의 직렬간섭제거 알고리즘의 오류율 성능해석)

  • Koo Je-Gil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • This paper drives the exact expression of bit error rate(BER) performance for successive interference cancellation(SIC) algorithm against multipath interference components in a high-speed downlink packet access(HSDPA) system of W-CDMA downlink and the BER performance is evaluated by numerical analysis. Numerical results showed that the average BER performance is rapidly saturated in terms of increasing the number of multipath and is revealed significant improvement for improvement Processing gain(PG). For example, the average BER Performance of the SIC algorithm is superior to the performance of conventional scheme by more than 7dB and 1.4dB for processing gain PG=54 and 128 under the two-path channel and average BER=$1.0{\times}10^{-3}$, respectively. This results also indicated that the average BER saturation is occurred at nearly one weight factor which is assigned to pilot and data channels. Likewise, the average BER performance is greatly degraded due to increasing the interference power in proportional to the number of multipath with increasing multicode K. And the smaller multipath fading channel gain is arrived later, the more the average BER performance is improved. The results of performance analysis in this paper indicated that the multipath interference cancellation is required to improve the BER performance in a HSDPA system under multicode for high-speed packet transmission, low spreading factor, and multipath fading channel.

Development of Tree Stem Weight Equations for Larix kaempferi in Central Region of South Korea (중부지역 일본잎갈나무의 수간중량 추정식 개발)

  • Ko, Chi-Ung;Son, Yeong-Mo;Kang, Jin-Taek;Kim, Dong-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.184-192
    • /
    • 2018
  • In this study was implemented to develop tree stem weight prediction equation of Larix kaempferi in central region by selecting a standard site, taking into account of diameter and position of the local trees. Fifty five sample trees were selected in total. By utilizing actual data of the sample trees, 11 models were compared and analyzed in order to estimate four different kinds of weights which include fresh weight, ovendry outside bark weight, ovendry inside bark weight and merchantable weight. As to estimate its weight, the study has classified its model according to three parameters: DBH, DBH and height, and volume. The optimal model was chosen by comparing the performance of model using the fit index and standard error of estimate and residual distribution. As a result, the formula utilizing DBH (Variable 1) is $W=a+bD+cD^2$ (3) and its fit index was 90~92%. The formula for DBH and height (Variable 2) is $W=aD^bH^C$ (8) and its fit index was 97~98%. In summation, Variable 2 model showed higher fitness than Variable 1 model. Moreover, fit index of formula for total volume and merchantable volume (W=aV) showed high rate of 98~99%, as well as resulting 7.7-17.5 with SEE and 8.0-10.0 with CV(%) which lead to predominately high fitness in conclusion. This study is expected to provide information on weights for single trees and furthermore, to be used as a basic study for weight of stand unit and biomass estimation equations.

A Camera Tracking System for Post Production of TV Contents (방송 콘텐츠의 후반 제작을 위한 카메라 추적 시스템)

  • Oh, Ju-Hyun;Nam, Seung-Jin;Jeon, Seong-Gyu;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.692-702
    • /
    • 2009
  • Real-time virtual studios which could run only on expensive workstations are now available for personal computers thanks to the recent development of graphics hardware. Nevertheless, graphics are rendered off-line in the post production stage in film or TV drama productions, because the graphics' quality is still restricted by the real-time hardware. Software-based camera tracking methods taking only the source video into account take much computation time, and often shows unstable results. To overcome this restriction, we propose a system that stores camera motion data from sensors at shooting time as common virtual studios and uses them in the post production stage, named as POVIS(post virtual imaging system). For seamless registration of graphics onto the camera video, precise zoom lens calibration must precede the post production. A practical method using only two planar patterns is used in this work. We present a method to reduce the camera sensor's error due to the mechanical mismatch, using the Kalman filter. POVIS was successfully used to track the camera in a documentary production and saved much of the processing time, while conventional methods failed due to lack of features to track.

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

A Study on the Difference of Cataract Surgery Prognosis between Adult Diseases and Non-adult Diseases (성인병 여부에 따른 백내장 수술 효과의 차이 연구)

  • Cho, Seon-Ahr
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.3
    • /
    • pp.275-280
    • /
    • 2016
  • Purpose: This study is intended to look into the difference in surgery effects through the analysis of risk factors on how the common adult diseases among Korean adults diseases (glaucoma, hypertension and diabetes) are affecting cataract. Methods: Cataract surgery patients' daily records at hospitals in Jeonnam were used as analysis data. Factors - which can affect the results of medical treatment before and after an operation - were classified into the input, process and outcome of medical treatment. The medical treatment and patient characteristics were reflected as the input of medical treatment, and clinical results, functional status and general status as the process of medical treatment. Results: There was a close relationship between adult diseases of glaucoma, diabetes and hypertension, and cataract. Visual acuity of adult diseases patients was 10% lower than of non-adult diseases patients. And for post-surgery it was around 16% difference in refractive error and visual acuity between two groups. Conclusions: According to a study result, the cataract has been confirmed that there is a close relationship of Adult disease patients's glaucoma, diabetes and hypertension. Depending on the type about these adult diseases, before and after cataract surgery, vision and refractive power was found to indicate a significant difference when compared with conventional low normal adult control.

Application of Hydroacoustic System and Kompsat-2 Image to Estimate Distribution of Seagrass Beds (수중음향과 Kompsat-2 위성영상을 이용한 해초지 분포 추정)

  • Kim, Keunyong;Eom, Jinah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Kim, Kwang Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2012
  • Despite the ecological importance of seagrass beds, their distributional information in Korean coastal waters is insufficient. Therefore, we used hydroacoustic system to collect accurate bathymetry and classification of seagrass, and Kompsat-2 (4 m spatial resolution) image for detection of seagrass beds at Deukryang Bay, Korea. The accuracy of Kompsat-2 image classification was evaluated using hydracoustic survey result using error matrix and Kappa value. The total area of seagrass beds from satellite image classification was underestimated compared to the hydroacoustic survey, estimated 3.9 and $4.5km^2$ from satellite image and hydroacoustic data, respectively. Nonetheless, the accuracy of Kompsat-2 image classification over hydroacoustic-based method showing 90% (Kappa=0.85) for the three class maps (seagrass, unvegetated seawater and aquaculture). The agreement between the satellite image classification and the hydroacoustic result was 77.1% (the seagrass presence/absence map). From our result of satellite image classification, Kompsat-2 image is suitable for mapping seagrass beds with high accuracy and non-destructive method. For more accurate information, more researches with a variety of high-resolution satellite image will be preceded.