• Title/Summary/Keyword: data augmentation method

Search Result 203, Processing Time 0.027 seconds

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

An Improved Deep Learning Method for Animal Images (동물 이미지를 위한 향상된 딥러닝 학습)

  • Wang, Guangxing;Shin, Seong-Yoon;Shin, Kwang-Weong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.123-124
    • /
    • 2019
  • This paper proposes an improved deep learning method based on small data sets for animal image classification. Firstly, we use a CNN to build a training model for small data sets, and use data augmentation to expand the data samples of the training set. Secondly, using the pre-trained network on large-scale datasets, such as VGG16, the bottleneck features in the small dataset are extracted and to be stored in two NumPy files as new training datasets and test datasets. Finally, training a fully connected network with the new datasets. In this paper, we use Kaggle famous Dogs vs Cats dataset as the experimental dataset, which is a two-category classification dataset.

  • PDF

Discriminant Analysis under a Patterned Missing Values

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.1
    • /
    • pp.13-25
    • /
    • 1989
  • This paper suggests a classification rule with unequal covariance matrices when a patterned incomplete data are involved in the discriminant analysis. This is an extension of Geisser's (1966) result to the case of missing observations. For the calssificaiton rule, we introduce an algorithm which contains data augmentation step and Monte Carlo integration step and show that the algorithm yields a consistant estimator of true classification probability. The proposed method is compared to the complete observation vector method through a Monte Carlo study. The results show that the suggested method, in general, performs better than the complete observation vector method which ignores those vectors of observation with one or more missing values from the analysis. The results also verify the consistency of the algorithm.

  • PDF

Bayesian inference on multivariate asymmetric jump-diffusion models (다변량 비대칭 라플라스 점프확산 모형의 베이지안 추론)

  • Lee, Youngeun;Park, Taeyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Asymmetric jump-diffusion models are effectively used to model the dynamic behavior of asset prices with abrupt asymmetric upward and downward changes. However, the estimation of their extension to the multivariate asymmetric jump-diffusion model has been hampered by the analytically intractable likelihood function. This article confronts the problem using a data augmentation method and proposes a new Bayesian method for a multivariate asymmetric Laplace jump-diffusion model. Unlike the previous models, the proposed model is rich enough to incorporate all possible correlated jumps as well as mention individual and common jumps. The proposed model and methodology are illustrated with a simulation study and applied to daily returns for the KOSPI, S&P500, and Nikkei225 indices data from January 2005 to September 2015.

Sentence-Chain Based Seq2seq Model for Corpus Expansion

  • Chung, Euisok;Park, Jeon Gue
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.455-466
    • /
    • 2017
  • This study focuses on a method for sequential data augmentation in order to alleviate data sparseness problems. Specifically, we present corpus expansion techniques for enhancing the coverage of a language model. Recent recurrent neural network studies show that a seq2seq model can be applied for addressing language generation issues; it has the ability to generate new sentences from given input sentences. We present a method of corpus expansion using a sentence-chain based seq2seq model. For training the seq2seq model, sentence chains are used as triples. The first two sentences in a triple are used for the encoder of the seq2seq model, while the last sentence becomes a target sequence for the decoder. Using only internal resources, evaluation results show an improvement of approximately 7.6% relative perplexity over a baseline language model of Korean text. Additionally, from a comparison with a previous study, the sentence chain approach reduces the size of the training data by 38.4% while generating 1.4-times the number of n-grams with superior performance for English text.

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.29-42
    • /
    • 2023
  • In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.

Discrimination model using denoising autoencoder-based majority vote classification for reducing false alarm rate

  • Heonyong Lee;Kyungtak Yu;Shiu Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3716-3724
    • /
    • 2023
  • Loose parts monitoring and detecting alarm type in real Nuclear Power Plant have challenges such as background noise, insufficient alarm data, and difficulty of distinction between alarm data that occur during start and stop. Although many signal processing methods and alarm determination algorithms have been developed, it is not easy to determine valid alarm and extract the meaning data from alarm signal including background noise. To address these issues, this paper proposes a denoising autoencoder-based majority vote classification. Training and test data are prepared by acquiring alarm data from real NPP and simulation facility for data augmentation, and noisy data is reproduced by adding Gaussian noise. Using DAEs with 3, 5, 7, and 9 layers, features are extracted for each model and classified into neural networks. Finally, the results obtained from each DAE are classified by majority voting. Also, through comparison with other methods, the accuracy and the false alarm rate are compared, and the excellence of the proposed method is confirmed.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

Abnormal state diagnosis model tolerant to noise in plant data

  • Shin, Ji Hyeon;Kim, Jae Min;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1181-1188
    • /
    • 2021
  • When abnormal events occur in a nuclear power plant, operators must conduct appropriate abnormal operating procedures. It is burdensome though for operators to choose the appropriate procedure considering the numerous main plant parameters and hundreds of alarms that should be judged in a short time. Recently, various research has applied deep-learning algorithms to support this problem by classifying each abnormal condition with high accuracy. Most of these models are trained with simulator data because of a lack of plant data for abnormal states, and as such, developed models may not have tolerance for plant data in actual situations. In this study, two approaches are investigated for a deep-learning model trained with simulator data to overcome the performance degradation caused by noise in actual plant data. First, a preprocessing method using several filters was employed to smooth the test data noise, and second, a data augmentation method was applied to increase the acceptability of the untrained data. Results of this study confirm that the combination of these two approaches can enable high model performance even in the presence of noisy data as in real plants.