13

Journal of the Korean
(Research Paper) Statistical Society

vol. 18, No.1, 1989

Discriminant Analysis under a Patterned Missing
Values®

Hea Jung Kim*

ABSTRACT

This paper suggests a classification rule with unequal covariance matrices when a
patterned incomplete data are involved in the discriminant analysis. This is an extension
of Geisser’s (1966) result to the case of missing observations. For the classification rule,
we introduce an algorithm which contains data augmentation step and Monte Carlo
integration step and show that the algorithm yields a consistant estimator of true class-
ification probability. The proposed method is compared to the complete observation vector
method through a Monte Carlo study. The results show that the suggested method, in
general, performs better than the complete observation vector method which ignores those
vectors of observation with one or more missing values from the analysis. The results

also verify the consistency of the algorithm,
1. Introduction

Incomplete observation vectors cause an important problem when many measurements
are made on each individual in a study. The classification analysis naturally bears this
problem. Little (1978) and Chan, Gilman and Dunn (1976) as well as two earlier studies
by Chan and Dunn (1972, 1974) suggest several methods of handling incomplete data
vectors in the training sample, ranging from ignoring them to estimating the missing
values by some means and then including them in the classification rule.
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Their studies were in conjunction with the normal based Fisher’s (1936) classification
rule with equal covariance matrices, and thus they do not give a general solution for the
problemn,

Our motivation for this study is to give a method of handling incomplete data vectors
in the classification analysis with equal or unequal covariance matrices. To formulate this
method, the Bayesian approach to the classification analysis taken by Geisser(1966) is
extended to the case of missing ovservations. Hence, as he has done, we shall restrict
ourselves to the case when the group prior probabilities are known. The extension to the
case where they are unknown, on which Geisser (1964) has already commented in detail,
can be easily managed. Here we will only deal with patterned incomplete p-variate sample
which can be classified into three types:

Type 1: p(< p) components of validation sample Z is missing,

Type 2: p.{< p) components of some observed vectors among training sample are

‘missing,

Type 3: both Type 1 and Type 2 cases are combined.

Under the Bayesian approach, constructing a classification rule for Type 1 missing case
is straightforward by applying marginal density of the multivariate Student t-distribution
(cf, Press, 1982, p. 137), so that the remaining part of this paper will be contributed to
exploit classification rules for Type 2 and Type 3 missing cases.

The plan of this paper is as follows. In Section 2 basic algorithm for constructing a
classification rule for Type 2 is suggested. This utilizes the sample mean Monte Carlo
method in Rubinstein(1981, p. 113). Section 3 is devoted to derive predictive densities of
missing vector and matrix of observations which are eassential for the algorithm. We
demonstrate, in Section 4, that the suggested algorithm vyields a consistent estimator of
predictive density for the validation sample Z, and that formulation of a classification rule
for Type 3 is straight-forward from the algorithm. In Section 5 a result of Monte Carlo
simulaton study is given for the comparison of the algorithm. Section 6 contains remarks
on a number of related points,

2. Basic Algorithm

Suppose Z be a p-variate observation from one of the populations ILi= N(g;, %), j=
1,---k, where the parameters g;, 3, are unknown. Also suppose that the independent p-
variate observations X (7), X.(j), - xn(j), say, training sample. from j-th population are
available, j=1,--- k. If the prior distribution of the parameters is diffuse, Geisser(1966)
showed that the predictive probability density for classifying Z into [T is the multivariate
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Student t-density given by
P(Z | data, j)= p P(Z | x(j), -+, xw(j))

N o ~ (2.1)
= G1+ Ne1 (L X)ST(Z-X;)] M

where C;= [N,/ (N/+1) 7 %, | (N;-1)S; I_% [(N;/2) /T(((N;-p) / 2),

p; is the prior probability of Z classifying into IT;, and X; and S, denote the sample mean
and the unbiased covariance matrix, respectively,

This has been derived by multiplying the prior group probability p; to the predictive
density of the form

§ § P(Z]| 6, 2)P(g, %1%, S) dg ds, (2.2)

where P(g;, 55 1X,, S;) denotes the joint posterior density of g and 3 under the diffuse
prior . It follows, from (2.1), that the predictive odds ratio for classifying Z into IT,, as
compared with [T;, becomes the ratio of the associated multivariate Student t-densities

P(Z | data, 5) / P(Z| data, j), i, J=1,--k (2.3)

An individual, validation sample, will be classified into a population [T if the predictive
odds ratio in (2.3) is larger than 1 for all ;.

When missing values occur, the predictive odds ratio in (2.3) may be modified to some
missing value method. The present study suggests a missing value method which can be
formulated by an algorithm. This algorithm contains data augmentation step and Monte
Carlo integration step, and is motivated by the following simple representation of the
desired predictive density

P(Z| X)= {P(Z|M, X) dF(M | X), (2.4)

where P(Z | X) denotes the predictive density of the new p-variate observation Z given
the incomplete data matrix X, F(M | X) denotes the cumulative predictive distribution
of the missing observation matrix M given X, and P(Z | M, X) denotes the conditional
density of Z given the augmented data (M, X).

Suppose pxN; matrix X(;) denotes the training sample from ;-th population and sup-
pose n, observations in the j-th sample contains the p, missing components, That is
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X () can be partitioned as

X(j)= [Xu(]') Xie(j) ]
_ - Xz(i)].
Here [X,(;)’, — 1 denotes p x n, matrix which contains block of missing observations

and X,(j)= [Xx(j)’, Xz(j)' ]’ represents the set of complete observation vectors, Then,
the predictive density of the missing observation block, say M(y), given X(j) can, in turn,
be expressed by

P(M(j) | X(j))=PM(y), Xu(i) | Xo(1)) / P(Xu(j) | X:()), (2.5)

where

P(M(5), Xu(j) | X:())= § § P(M(;')), Xu(i) | Xo(5), 6, %) Plai, 3| Xo(5)) dgd.

If the integration (2.4) can be calculated analytically, then the implementation of der-
iving P(Z | X(j)) is straightforward. Unfortunately, this runs into severe computational
difficulties. It is possible, however, by the Monte Carlo method, to perform the integration.
Equation (2.4) then motivates the following algorithm scheme.
Given the predictive density of M(j) given X(j) in (2.5),
step 1. generate a sample M,(j),---, Mm(;) from the predictive density P(M(j) | X)),
then construct the augmented data patterns (Mi(j), X(7)), 1= 1,---,m.

step 2. use the sample mean Monte Carlo method(cf. Rubinstein. 1981) to perform the
integration in (2.4). This gives that the approximation to P(Z | X(j)) is the
mixture of conditional densities of Z given the augmented data patterns generated
in step 1 such that

P(Z| X()) = m™ 2:1 P(Z | Mi(j), X(j)), (26)

In the above, we must be able to calculate P(Z | Mi(j), X(;)) for any augmented data
(Mi(j), X(j)) and we must be able to know P(M(j) | X(;)) in (2.5).

Since we know, from (2.1), P(Z | M.(j), X(j)) to be a multivariate Student t-density,
the problem of the algorithm is to derive P(M(;) | X(j)) in the explicit form under the
assumption that the prior distribution of the parameters is diffuse.
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3. Predictive Density of The Missing Data

In the previous section, we have seen that the algorithm needs P(M(;) | X(j)) to
augment the incomplete data.

We now develop the particular normal predictive machinery for the missing observation
matrix in j-th normal population training sample X(j),*-"xn(7), j= 1,--- k.
Here we assume that all the coordinates of missing observation vectors are the same.,

That is, the data matrix is the monotonic or nested pattern such that

(3.1)

aly) Xp(
(G, %(5), x(7)] = [ Xul7) () ] ,

M(j)  Xx(s)

where M(; ) indicates block of missing observations, Xy is an py(j) x ny(j) submatrlx
where Z ny(j)= N, the total number of independent sampling units, and Z Pulj) =
p, the nulmber of responses. Hereafter, for the notational convenience, we deni)te pu(j)
and nv(j) as pu and ny, respectively. The data matrix may be written in a more compact
form in the following way. Define

Xl(]): [Xl(j), Xz(]‘),"',xm(]v)] = [Xu(]-)', M(j)’]’, (32)
Xo(7)= [Xawa (1), Xmea(7), -8 () ] = [X ()", Xa(j)' 7, (3.3)

Lemma 1. Given the independent p-variate observation vectors X .(7) from j-th normal
population JI;= N(g, %), j= 1,---, k, the predictive probability distribution of X (j) s a
martrix T-distribution with N,—1 degrees of freedom, with density

P(X,() | Xo(7)) o | Vit (X(5)- X)) (X,()- Kgep)'| 072, (3.4)
where

K= X.(j)e:/ns, Vi= Xolf) X)) —nXr K|
Q= Ir—ee’'/N, N;> p + n, and e is the n, x 1 vector all of whose
1

elements are unity, k= 1,2,
Proof. Define X*= X,(j) & /n, and U= X,(j/)X,(j)'—n X" X7

Then the predictive density of X(j) given X,(j) is
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P(X,(7) | Xa(7))
= [ FP(x(), =, xa(5) | 6, Z)P(g, =, | xat1(7), - xw (j)) dod3;

o § ] 3TN "’“exp{—% t[SHVi+ Ut n(N-ny) (33—X=) (X=X / N;}ds
o< | Vi Uit n(N-ny) (X=X") (Xe=X*3) /N | ~0v-D /2 (35)

Constructing (3.5) in terms of random matrix X,(j) gives

—(N;-1) /2

P(X,() | Xe(7)) o | Vit (X,()- KieD) i(Xu(5)- Xie'y)’

which is the Kernal of a matrix T-distribution with N;-1 degrees of freedom. This comp-
letes the proof. 1B

Thus, via conditional distribution theorem by Dickey(1967), it is possible to derive pre-
dictive distribution of M(j) from Lemma 1. To apply the Theorem, we need to partition
X% and V, in (34) as

X O—(;él)l] Vn Vlz
X = — V. = '
i [(X:fe;)z TV, Vaf o, (36)

where (Xje;),: D, x n, and Vik: p, X Dy, 7, k= 1,2. Then the following Theorem gives the
desired distribution.

Theorem 2. Suppose missing observation matrix M(j) is of the form (3.1). Then predi-
ctive distribution of M(y) | Xu(j), X,(j) is a matrix T-distribution with N; - 1 degrees
of freedom, with density

P(IM() | Xu(f), X2(7))

[V | (Nj=n)—1>/2

h ‘K(Nj_lrnlrpz)Ilepz ‘

[V + (M(3) -G;)Q M) -6;)/ [Nz B7)

where N> P+ n, Vga= V- V21 V_}x Vlz,
Gi= (Xfe))+ Va Vi (Xu(5) - (Xeh),
Q= 0} + (Xu(i)- (X)) Vi (Xu(y)- (X)),
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and

K(N-Ln, p)= o2 T, (RBL) /o, (RL) i

Ty (A)= n®& 0/ T(Q) T(A-1/2) oo T(A-p,/2+ 1/2).
Proof. with the result in Lemma 1 and the following relations of the partitioned matrices

VZ‘-I V_éz V21 V‘il-2 = V21 VA{l »
V‘}x-z - V_il V12 V_lzz V21 V‘}1-2 = V_{l ,

the predictive density of M(j) is readily obtained by Dickey’s conditional matrix T-dist-
ribution Theorem (cf. Press 1982, p. 139).

Corollary 2.1. The predictive probability distribution of a missing observation vector
M) | Xu(), Xe(s) , where M(j): p, x 1, Xu(j): py x 1,

1s p,- variate Student t-distribution with N,—p,—1degrees of freedom, with density given
by

PIM@) | Xu(), X(5))

N; -1 —‘%
I )IAjI -1 —(N ~1)/2
[14+M(i)-a) A, (M(j)-a;)/(N;-P,-1)] 7 |
b pgs2_ N; -P, -] J Y J J
{m(N;-P,y-1)) = (3-8)

where a/= (X}),+Va V4 (Xu(5)=(XD)),
Ajz vaz.l Wi / [(N]_l) (N]_pz_]-) :Iy
= 1+ (N;-1) [Xa())— (X)) Vi [Xu() - (X))

Proof. This result is a special case of Theorem 2 when n,= 1. Since, for n,= 1, notations
in (3.7) become

G= (X)) + Va V‘L(Xn(j)—(xf)l),
Q= Ni/ (Ni-1) + [Xu()) = (X] Vu [Xu()— (),
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and KN, 1, p)= w2 D(N=R=by ol g

4. Property of the Algorithm and Classification Rules

In this section, we return to the study of the algorithm outlined in Section 2. Let us
rewrite the integral of interest in (2.4) for the j-th population sample case such that

P(Z| X(j)= [P(Z1M(@), X(7)) dF (M) | X()), (4.1)

where X(j)= (Xyu(j), X:(j)).
Assuming that P(M(;)| X(;)) is the predictive density of the missing observation matrix
M(;) derived in Theorem 2

P(Z | X(j))= E[P(Z | M(), X(7)) ], (4.2)

where the random matrix M(5) is distributed according to P(M(5) | X(4)).
It is obvious from (4.2) that an unbiased estimator of P(Z | X(j)) is its sample mean

m;

gi=2 P(ZIMi(),X())/m, (4.3)

=1

where Mi(j), i= 1,---, m; denotes a generated sample from the predictive distribution
M@G) | X().
The variance of d; is
Var(s)= [ | {P(Z| M(j) X(j))} dF(M(;)) | XGN—{PZ| XGNP/ my
<1/ m. (4.4)

Hence, from (4.3) and (4.4),
3 P(Z| M(), XG)/ m & PZ]XO). (45)

In other words, the algorithm converges to the true predictive density P(Z | X ().

Theorem 3. Let Z: p x 1 be an observation from one of the populations I[;= N(&;, 35),
j=1,"--k, where the parameters are unknown. If the prior distribution of the parameters
is diffuse and j-th training sample has the nested pattern missing data M(; ), a consistent
estimator of the predictive probability for classifying Z into II; given the incomplete data
X(j) is
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~ Loomy .
P(Z | incomplete data, ;)= % 3 P(Z | M), X)), (4.6)
=1

where M;(j) is i-th generated observation matrix from the distribution (3.7).

Proof. If we notate the augmented data matrix as

Xu(7) Xu(j)] _ .
[ M) Xa(j) = [X, X, **, XN, (4.7)

and denote their sample mean and unbiased sample covariance matrix to be X, and S,
respectively. Then pP(Z | Mi(;), X (7)) becomes the same as p(Z | data, j) in (2.1).
Hence, composition of the result (4.5) and Geisser’s result (2.1) completes the proof. W

Corollary 3.1. A classification rule for Type 2 missing case is to classify Z into a popu-
lation which satisfies

max 2 ZZJIP(ZIM@,X(]')). (48)

1gigk Iy
Proof. Theorem 3 and rationale of the predictive odds ratio in (2.3) give the result, [ ]

Given the classification rule in (4.8), a classification rule for Type 1 and Type 3 missing
cases are immediate from the following Lemma,

Lemma 4. If in the density(2.1) Z, X;, and S; are partitioned so that Z'= (Z;,2), X

= (Xi, X2) and S;=(S), ik= 1,2, where Z,: p, x 1 and Sju: p, x p, the marginal pre-
dictive probability density for classifying Z, into I, is given by the multivariate Student
t-density

P(Z, | data, j) = G MNPa/2 (49)

where C; denotes corresponding constant term as in (2.1).

Proof. Expand the quadratic form in (2.1 ), complete the square in Z,, and integrate with
respect to Z,(cf. Press, 1982, p.137).
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Corollary 4.1. A classification rule for Type 1 missing case is to classify Z, into a popu-
lation which satisfies

max  P(Z, | data, 7). (4.10)

1=k

Proof. This is a direct result from Lemma 4. &

Corollary 4.2. A classification rule for Type 3 missing case is to classify Z,: Py x 1 into
a population which satisfies

max 2 gp(zJMz(]’), X)), (411)

15k my

where pjP(Z,| Mi(j), X(;7)) is the same expression in (4.9) when we substitute X;1 and
Sy appeared in (4.9) by corresponding values obtained from the augmented data matrix
in (4.7).

Proof. This is a consequence of Theorem 3 and Lemma 4.

Note that Corollary 4.2. can also be applicable to Type 3 case when validation sample and
training sample have different numbers of missing components.

5. A Monte Carlo Study

Purpose of our Monte Carlo study is to see whether the suggested method performs
well. To implement this purpose, we consider three different probabilities of classifying
7 into a correct population based on a single training sample. The three probabilities
considered in this study can be described as follows:

PP1= posterior probability of Z classified into a correct population calculated by a
complete training sample. This can be obtained from Geisser’s result in (2.1).

PP2— approximate posterior probability of Z classified into a correct population calcu-
lated by the suggested algorithm.

PP3= posterior probability of Z classified into a correct population calculated by the
complete observation vector method. All vectors of observation with one or more
missing values are omitted from analysis. The Geisser’s result in (2.1) is calcu-
lated as usual with sample size reduced.
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In this study, we generate N random vectors(complete training sample) from a p-
variate normal population with given mean &= (p, p,-*-, p) and covariance matrix 3, and
then, to construct incomplete training sample, intentionally assume that p, ({ p) compo-
nents of first n ({ N) vector observations generated are missing. With the choice of the
varidation sample Z to be &, we calculate the three posterior probabilities based on two
generated training samples-ppl based on the complete training sample, and pp2 and pp3
based on the incomplete training sample. Since ppl obviously attains true probability of
correct classification, relative probabilities pp2 / pp) and pp3 / ppl are compared here. This
comparison may show which one performs better hetween two missing value methods-
suggested method and complete observation vector method. Without loss of generality we
take the variance equal to one and all correlation coefficients equal: hence £ = R = {p}
and p values are restricted to the value such that » = -1/ (p-1) for the equicorrelation
matrix R being positive definite,

Table below presents average values of PP2/PP1 and PP3/PP1 for various values
of a, 3, and m, where a==n /N is the proportion of missing values, and = P,/ pis the

Table 5.1. Average Relative Posterior Probilities of Correct Classification

o 0.1 0.05 0.03
PlaT s 25 60 100 5 25 60 100 5 25 60 100

033 | 929 910 913 933 961 967 965" 969 969 989" 980 979
3 (797)  (797)  (797) (797) (811) (811) (B811) (811) (944) (544) (944) (544)

066 | 821 840 837 861 956" 936 939 9300 942 942 M7 950
(797) (797)  (797) (797) (811) (811) (BI1) (811) (944) (944) (944) (44
017 | 925 884" 933 937 967 952 958 962 969 982 983 983
(518) (518) (518) (518) (814) (814) (8l14) (814) (884) (884) (.884) (.844)

6033 | 542 592 823 818 962" 927 934 937 960 962" 960 961
(518) (518) (518) (518) (814) (814) (B814) (814) (884) (884) (.884) (884)

050 | 670 775 739 810 898 919" 909 911 919 936 944 940"
(581) (518) (518) (518) (814) (814) (814) (B814) (884) (884) (.884) (.8%4)
011 | 872 912 923 925 978" 965 963" 973 985" 981 975 978
(491)  (491) (481) (491) (693) (693) (693) (693) (822) (82) (822) (822)

91033 | 691 798 874 881 864 911 920 922 957 958 962 .963
(491) (491} (491) (491) (693) (693) (693) (693) (822) (822) (822) (822

055 | 623 713 812 811" 844 873 857" 896 926 944" 936 936
(491)  (481) (491) (491) (.693) (693) (693) (693) (.822) (.822) (.822) (822

Note each cell contains average value of pp2/ pp1 in the above and pp3/pp1 in the below with parentheses. “*” denotes
the case where average value of pp2 / pp1 does not follow monotonic increase.
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proportion of missing components, and m is the number of data augmentations in the
suggested algorithm. For each sets of parameters(p, «, 5, m), 9 cases were randomly
chosen, ie, 3R(p= 0.1, 0.5, 0.9) and 3(N, n) with N and n determined to give the desired
«, The entire procedure was performed 864 times, and PP2 / PP1 and PP3 /PPl were
obtained at each time. To summarize our results. we divided the 864 pairs of relative
probabilities into 96 sets of 9 values according to the parameter values (p, @, 8, m). For
each set of 9 pairs of relative probabilities, we averaged them and we present these ave-
rages in the table,

As expected, we find in the two methods a tendency for poorer performance as p, «,
and S increase. Though these are limited informations from our Monte Carlo study, the
differences between PP2 / PP1 and PP3/ PP1 are substantial. Hence the table does show
that the suggested ‘algorithm performs better than the complete observation vector met-
hod. Especially, for large p and «, the performance is prominent. We note also a tendency
for PP2 / PP1 to increase toward 1 with m. This fact gives an indirect verification for
the consistency property of the algorithm, Since we can not know the true posterior pro-
bability in (2.6), direct verification for the property is not available.

Some of PP2/PP1 have been starred (), indicating the case where average value
of PP2 / PP1 does not follow monotonic increase, In this study, the average value 1s based
on 9 randomly chosen values of p, N, and n without repetition. Hence, we can conjecture

that the starred cases occur mainly due to lack of repetition.
6. Concluding Remarks

The area of discriminant analysis still contains many issues that have not been fully
resolved yet. These include the question of how to construct a classification rule with
unequal covariance matrices when incomplete observation vectors are involved in the
analysis. A Bayesian approach to the classification problem in the case of normally dist-
ributed observations gives a way of dealing with this problem.

In this article we have suggested a general classification rule by extending Geisser’s(1
966) result to the case of missing observation. This can be used for handling mcomplete
data with equal or unequal covariance matrices. General indication, based on the author’s
limited experiance, is that the performance of the suggested method is better than the
complete observation vector method. Especially, for large dimension(p) and proportion of
missing values(n / N), the performance of the suggested method over the complete obs-
ervation vector method 1s prominent,
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In the present paper, our concern was confined to constructing a classification rule for
the nested patterned missing data. The issues of more general developments pertaining
to a classification rule which covers random patterned missing data are not unimportant
but are left for continuing study.
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