• Title/Summary/Keyword: data association

Search Result 33,226, Processing Time 0.056 seconds

A Systematic and Efficient Approach for Data Association in Topological Maps for Mobile Robot using Wavelet Transformation

  • Doh, N.L.;Lee, K.;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2017-2022
    • /
    • 2004
  • Data association is a process that matches a recent observation with known data set, which is used for the localization of mobile robots. Edges in topological maps have rich information which can be used for the data association. However, no systematic approach on using the edge data for data association has been reported. This paper proposes a systematic way of utilizing the edge data for data association. First, we explain a Local Generalized Voronoi Angle(LGA) to represent the edge data in 1-dimension. Second, we suggest a key factor extraction procedure from the LGA to reduce the number by $2^7-2^8$ times, for computational efficiency using the wavelet transformation. Finally we propose a way of data association using the key factors of the LGA. Simulations show that the proposed data association algorithm yields higher probability for similar edges in computationally efficient manner.

  • PDF

Environmental Consciousness Data Modeling by Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.529-538
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a riven large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF

Association Rule of Gyeongnam Social Indicator Survey Data for Environmental Information

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.59-69
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze Gyeongnam social indicator survey data by 2001 using association rule technique for environment information. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We can use to environmental preservation and environmental improvement by association rule outputs

  • PDF

Discovery of Association Rules Using Latent Variables

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.149-160
    • /
    • 2006
  • Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary threshold measures in association rule; support and confidence and lift. In the case of appling real world to association rules, we have some difficulties in data interpretation because we obtain many rules. In this paper, we develop the model of association rules using latent variables for environmental survey data.

  • PDF

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Environmental Consciousness Data Modeling by Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-124
    • /
    • 2004
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF

Encoding of XML Elements for Mining Association Rules

  • Hu Gongzhu;Liu Yan;Huang Qiong
    • The Journal of Information Systems
    • /
    • v.14 no.3
    • /
    • pp.37-47
    • /
    • 2005
  • Mining of association rules is to find associations among data items that appear together in some transactions or business activities. As of today, algorithms for association rule mining, as well as for other data mining tasks, are mostly applied to relational databases. As XML being adopted as the universal format for data storage and exchange, mining associations from XML data becomes an area of attention for researchers and developers. The challenge is that the semi-structured data format in XML is not directly suitable for traditional data mining algorithms and tools. In this paper we present an encoding method to encode XML tree-nodes. This method is used to store the XML data in Value Table and Transaction Table that can be easily accessed via indexing. The hierarchical relationship in the original XML tree structure is embedded in the encoding. We applied this method to association rules mining of XML data that may have missing data.

  • PDF

A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks (연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구)

  • Kim Jin Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Discovery of Association Rules Using Latent Variables

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.177-188
    • /
    • 2005
  • Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary threshold measures in association rule; support and confidence and lift. In the case of appling real world to association rules, we have some difficulties in data interpretation because we obtain many rules. In this paper, we develop the model of association rules using latent variables for environmental survey data.

  • PDF

Relation for the Measure of Association and the Criteria of Association Rule in Ordinal Database

  • Park, Hee-Chang;Lee, Ho-Soon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.197-213
    • /
    • 2003
  • One of the well-studied problems in data mining is the search for association rules. The goal of association rule mining is to find all the rules with support and confidence exceeding some user specified thresholds. In this paper we consider the relation between the measure of association and the criteria of association rule for ordinal data.

  • PDF