• 제목/요약/키워드: data analysis - solar system

검색결과 376건 처리시간 0.086초

Perez Model을 적용한 태양광 시스템 별 최적 설치 조건 및 최대 발전량 분석 (An Analysis of Optimal Installation Condition and Maximum Power Generation of Photovoltaic Systems Applying Perez Model)

  • 이재덕;김철환
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.683-689
    • /
    • 2012
  • Photovoltaic(PV) system is one of power generation systems. Solar light in PV system is like the fuel of the car. The quantity of electricity generation, therefore, is fully dependent on the available quantity of solar light on the system of each site. If a utility can predict the solar power generation on a planned site, it may be possible to set up an appropriate PV system there. It may be also possible to objectively evaluate the performances of existing solar systems. Based on the theories of astronomy and meteorology, in this paper, Perez model is simulated to estimate the available quantity of solar lights on the prevailed photovoltaic systems. Consequently the conditions for optimal power generation of each PV system can be analyzed. And the maximum quantity of power generation of each system can be also estimated by applying assumed efficiency of PV system. Perez model is simulated in this paper, and the result is compared with the data of the same model of Meteonorm. Simulated site is Daejeon, Korea with typical meteorological year(TMY) data of 1991~2010.

시뮬레이션을 이용한 사무소건물 적용 태양열 급탕시스템의 에너지성능 분석 (Energy Performance Analysis of Solar Hot Water Heating System used in an Office Building Using the Dynamic Simulation)

  • 고명진;최두성;김용식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.281-285
    • /
    • 2009
  • This paper is to simulate a solar hot water heating system used in a medium-scale office building using the dynamic simulation. This study is focused chiefly on the annual variation of energy performance, the solar fraction with respect to the difference of hot water load temperature. For this purpose the simple model of a solar hot water heating system has been considered with TRNSYS program and the simulations were performed with the weather data in Seoul, Korea. The share ratio of solar hot water system of the summer season appeared higher than the winter season because that the decrease of the domestic hot water load was far despite the relative decrease of the solar radiation. As the temperature was lower from $60^{\circ}C$ to $50^{\circ}C$, the solar fraction increases 8.1 percent due to 20-percent decrease of annual hot water load.

  • PDF

국내 일사량의 성분 분석 (Analysis of Solar Radiation Components in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.8-12
    • /
    • 2009
  • The Knowledge of the solar radiation components are essential for modeling many solar energy systems. This is particularly the case for applications that concentrate the incident energy to attain high thermodynamic efficiency achievable only at the higher temperatures. In order to estimate the performance of concentrating thermal systems, it is necessary to know the intensity of the beam radiation, as only this component can be concentrated. The Korea Institute of Energy Research(KIER) has began collecting solar radiation component data since August, 2002. KIER's component data will be extensively used by concentrating system users or designers as well as by research institutes. The Result of analysis shows that the annual-average daily diffuse radiation on the horizontal surface is $1,458cal/m^2$ and daily direct radiation on the horizontal surface is $1,632cal/m^2$ for all over the 16 areas in Korea.

  • PDF

주택용 3kW 태양광발전시스템의 구성요소법 특성 분석 (Characteristics analysis of Residential 3kW PV System)

  • 변문걸;박정국;임홍우;이강연;조금배;백형래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1181-1182
    • /
    • 2006
  • The solar power system comprises a solar battery that directly converts light energy to electrical energy with a photovoltaic effect and a power converter system, that is, inverter that converts direct current power, which is generated from solar battery to common alternating current. In this paper, database was constituted through remote monitoring supervision measurement for the long-time positive operation of 3kW solar power system installed within the solar energy positive research complex of Chosun University. As a result of analyzing the reduction of the efficiency of solar battery and inverter that are compositional components of PV system through an analysis on the acquired data, the PV output was proven over 65% of the total output when insolation intensity exceeded 600W/m2 in 2005, and the array conversion efficiency dropped much more than rating; meanwhile, insolation intensity dropped below 600W/m2. Therefore, it has been demonstrated that approximately 35% of the entire amount of PV output operated under the condition that the inverter efficiency rate dropped rapidly by 60 to 70%.

  • PDF

파사드 일체형 자연순환 태양열온수기 유동해석 (Flow Analysis of Facade Integrated Solar Water Heater with Natural Circulation)

  • 백남춘;이왕제;임희원;신우철
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.167-172
    • /
    • 2016
  • Purpose: The solar water heater with natural circulation has been used for several decades in the world as it is automatically operated without a pump and controller and is easy to maintain and repair. After the subsidy was offered from 2012, the solar water heater with natural circulation is becoming increasingly popular in Korea. Recently, the development of a wall-integrated solar water heater, which improves the applicability of buildings and prevents the overheating in the summer, is being developed. On the other hand, the design and performance evaluation data of solar water heaters are very inadequate, and analysis of heat and flow is required to develop a new type of solar water heater. Method: Therefore, in this study, we proposed a new simplified system analysis model that reflects heat and pressure loss from the test results of KS B ISO 9806-1 (Solar collector test method), assuming that the collector is a simple pipe system, the validity of which was verified through experiments. Result: As a result, first, the RMSE of the system circulation flow rate and the average temperature of the inlet and outlet of the collector according to the experimental results and the simulation are 0.05563 and 0.88530, respectively, which are very consistent. Secondly, the mass flow rate is increased linearly with the increase of the solar radiation, and the mass flow rate is 0.0104 ~ 0.0180kg/s in the range of $200{\sim}380W/m^2$ of solar irradiance. Compared with the test flow rate 0.0764kg / s of the test collector, it showed a level of less than 20%.

선체의 태양복사 열변형 해석을 위한 전처리시스템 (A System for Thermal Distortion Analysis of Hull Structures by Solar Radiation)

  • 하윤석;이동훈
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.275-281
    • /
    • 2016
  • One of the most important things for quality to meet ship-production schedule is an accuracy control. A ship is assembled by welding through whole production process, so it is important that loss by correction will not happen as much as possible by using some engineering skills like reverse design, reverse setting and margin for thermal shrinkage. These efforts are a quite effective in fabrication stages, but not in erection stages. If a ship block which consists of common steel is exposed to directional solar radiation, its dimensional accuracy will change high as time by its thermal expansion coefficient. Therefore, the measuring work would be often done at dawn or evening even with having a very accurate device. In this study, an FE analysis method is developed to solve this problem. It can change measured data affected by solar thermal distortion to ones not, even though ship-block is measured at an arbitrary time. It will use the time when measuring, the direction of block and the weather record by satellites. It is confirmed by a comparison between measured data of a ship-block and the result by suggested analysis method. Furthermore, a pre-processing system is also developed for fast application of the suggested analysis method.

흡수식 2중효용 시스템의 증발기 열원으로 태양열을 이용하는 LiCl 수용액 난방시스템 해석 (Analysis of Thermodynamic Design Data of Double-Effect Absorption System for Heating using LiCl-water for Evaporator Heating Source of Solar Energy)

  • 원승호
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, thermodynamic design data for heating of double-effect absorption system using LiCl-water for evaporator heating source of sofar energy are investigated for the water-LiCl pair and a comparative study of the water-LiCl pair with the water-LiBr pair is given used for the computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water -LiCl pair than for the water-LiBr pair, and FR is lower for the water-LiCl pair than for the water LiBr pair.

태양에너지 측정에 의한 한반도 주요 도시의 대기청명도 분석 (Atmospheric Clearness Index Analysis of Major Cities in Korea Peninsula Using Solar Radiation Measurement)

  • 조덕기;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.174-177
    • /
    • 2008
  • The amount of incident solar rays on inclined surfaces with various directions has Since the atmospheric clearness index is main factor for evaluating atmosphere environment, it is necessary to estimate its characteristics all over the major cities in Korea Peninsula. We have begun collecting clearness index data since 1982 at 16 different cities in South Korea and estimated using empirical forecasting models at 12 different stations over the North Korea from 1982 to 2006. This considerable effort has been made for constructing a standard value from measured data at each city. The new clearness data for global-dimming analysis will be extensively used by evaluating atmospheric environment as well as by solar application system designer or users.

  • PDF

태양열시스템 설치를 위한 방위별 경사면일사량 분석 (Analysis of Solar Radiation on Inclined Surfaces with various Directions for the Installation of Solar Thermal Systems)

  • 조덕기;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.171-173
    • /
    • 2008
  • The amount of incident solar rays on inclined surfaces with various directions has been widely utilized as important data in installing solar collector, hot water system, and designing solar buildings and house. This is because the performance of the solar energy applied systems is much affected by angle and direction of incident rays. Recognizing those factors mentioned above are of importance, actual experiment has been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. The results obtained in this research could be used in designing optimal solar thermal systems.

  • PDF

접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석 (Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant)

  • 서동혁;박영칠
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.