• Title/Summary/Keyword: damage sensitivity

Search Result 495, Processing Time 0.029 seconds

The Study of Air Sampling Smoke Detector (공기흡입형 연기감지장치에 관한 연구)

  • 이복영;이병곤
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-91
    • /
    • 2003
  • Since the air stream in the room controlled by HVAC system affects on he expected response of conventional detectors which are designed in accordance with normal characteristics of air stream in the fire incident, unexpected operation time delay may occur in fire. In order to solve this problem and to improve sensitivity so that to initiate fire in its early stages for minimizing damage and protecting people, we studied and developed Air Sampling Smoke Detector. The Air Sampling Smoke Detector is a kind of active-type fire detection system. it draws air continuously from the protected area through an air sampling pipe network to the smoke density analyzer. This study presents smoke density analysing technique and air intake balancing technique through an air sampling pipe network. As a result of evaluating, Air Sampling Smoke Detector was much more sensitive than conventional smoke detectors that passively wait for smoke to reach them and was not affected by ambient airflow in the room by means of balanced air intake through the sampling holes.

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

Differential Responses of Three Cyanobacteria to UV-B and Cd

  • Atri, Neelam;Rai, Lal-Chand
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.544-551
    • /
    • 2003
  • Interactive effects of UV-B and Cd on growth, pigment, photosynthesis, and lipid peroxidation have been studied in Anabaena, Microcystis, and Nostoc; all the tested cyanobacteria showed differential sensitivity to different dosage of UV-B and Cd alone as well as in combination. Phycocyanin was severely affected by UV-B and Cd by all the strains; the degree of pigment bleaching was most pronounced in Anabaena followed by Microcystis and Nostoc. $UV-B_2+Cd_2$ produced nearly 83, 78, and 65% inhibition of phycocyanin in Anabaena, Microcystis, and Nostoc, respectively. The above treatment also significantly decreased the contents of Chl ${\alpha}$ and carotenoid. Presence of capsule in Microcystis protected the phycocyanin bleaching as compared to decapsulated cells. Laboratory-grown Microcystis revealed about 75 and 80% inhibition, following $UV-B_2+Cd_2$ treatment, respectively. in capsulated and decapsulated cells. Damage caused by Cd was more pronounced than UV-B. Inhibition of photosynthesis did occur in all the test strains, being maximum in Anabaena. PS II was the most sensitive component of the electron transport chain, showing 84, 80, and 70% inhibition in Anabaena, Microcystis, and Nostoc, respectively. As compared to control, significant lipid peroxidation (6.5-fold higher) was observed in Anabaena with $UV-B_2+Cd_2$, $^{14}C-uptake$ was more susceptible to Cd and Uv-B than oxygen-evolution. Approximately 84, 80, and 76% inhibition of $^{14}C-uptake$ was observed in Anabaena, Microcystis, and Nostoc, respectively. Similarly, $UV-B_2+Cd_2$ inhibited APT content of Anabaena by 87%. This ,study suggests that inhibition of carbon fixation was due to decreased ATP content of the test cyanobacteria by UV-B+Cd, where Anabaena was the most sensitive and Nostoc the most tolerant.

Development on mechanism for opening sensitivity quality improvement of oven range door using nonlinear cam and spring (비선형 캠과 스프링을 이용한 오븐 렌지 도어의 열림 감성 품질 향상 메커니즘 개발)

  • Kim, Hwi-Yeon;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.616-624
    • /
    • 2014
  • Most of oven range doors are opened from top to down. Feeling of door in case of home appliances including oven ranges affects the quality of product. The major factors to evaluate the feeling quality are opening force, closing force, and bouncing effect happened when the door is opened completely. If opening and closing forces become large, consumers may have complaints. If the bouncing effect becomes large, the impact can cause the body as well as the door to damage. Opening and closing forces, and bouncing effect must be minimized to improve the feeling quality. In this study, the mechanism which improves the existed dual compressive spring and cam structure is suggested by using nonlinear cam and spring. After the nonlinear cam is designed and manufactured for the suggested mechanism, this cam is confirmed to become more superior than the existed one by applying it to the practical oven range.

Evaluation of Composite Laminates for Aircraft Primary-Structure Applications Using Non-Linear Parameter of Ultrasonic Guided Wave (유도초음파의 비선형 파라미터를 이용한 항공기 구조체의 복합재료 적층판 열화 평가)

  • Cho, Youn-Ho;Kim, Do-Youn;Choi, Heung-Soap;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.126-131
    • /
    • 2010
  • The purpose of this study is to assess the condition of composites used in aircraft under varying temperature environment with ultrasound guided wave technique. Investigation of crucial influential factor on the composite health monitoring related to aircraft operational environments such as the number of thermal cycles and temperature deviation between ground level and flight altitude has been of a great concern for aircraft safety issue. In this study, ultrasonic guided wave health monitoring scheme is proposed to evaluate composite specimens damaged with the thermal fatigue simulating aircraft operational condition. Guided wave dispersion curves are used to select right modes which show a promising sensitivity to each different thermal fatigue damage level. The present approach can be also implemented as one of on-lines health monitoring tools for aircraft.

In vitro and in vivo Biological Responses of Proton Irradiation from MC-50 Cyclotron

  • Jung, Uhee;Eom, Hyeon Soo;Jeong, Kwon;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.223-229
    • /
    • 2012
  • In this study, we investigated the biological damage and stress responses induced by ion beam (proton beam) irradiation as a basis for the development of protective measures against space radiation. We examined the biological effects of proton beam produced by MC-50 cyclotron at KIRAMS on the cultured cells and mice. The proton beam energy used in this study was 34.9 MeV and the absorption dose rate for cells and mice were $0.509Gy\;sec^{-1}$ and $0.65Gy\;sec^{-1}$, respectively. The cell survival rates measured by plating efficiency showed the different sensitivity and dose-relationship between CHO cells and Balb/3T3 cells. HGPRT gene mutation frequency in Balb/3T3 was $15{\times}10^{-6}Gy^{-1}$, which was similar to the reported value of X-ray. When stress signaling proteins were examined in Balb/3T3 cells, $I{\kappa}B-{\alpha}$ decreased markedly whereas p53, phospho-p53, and Rb increased after proton beam irradiation, which implied that the stress signaling pathways were activated by proton beam irradiation. In addition, cellular senescence was induced in IMR-90 cells. In the experiments with C57BL/6 mouse, the immune cells (white blood cells, lymphocytes) in the peripheral blood were greatly reduced following proton beam irradiation whereas red blood cells and platelets showed relatively little change. These results can be utilized as basic data for studying the biological effects of proton beam using MC-50 cyclotron with respect to proton therapy research as well as space radiation research.

Cystatin C as a novel predictor of preterm labor in severe preeclampsia

  • Wattanavaekin, Krittanont;Kitporntheranunt, Maethaphan;Kreepala, Chatchai
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.338-346
    • /
    • 2018
  • Background: The most common cause of acute kidney injury (AKI) in pregnancy is preeclampsia. Serum cystatin C (CysC) is a potential biomarker of early kidney damage as its levels are not disturbed by volume status changes in pregnancy, and serum CysC levels could serve as a replacement for conventionally used creatinine. In this study, we investigated the serum levels of CysC in severe preeclampsia cases and the associations between CysC levels and poor obstetric outcomes. Methods: Our cohort included severe preeclampsia patients with a normal serum creatinine level. Creatinine was measured to calculate estimated glomerular filtration rate (eGFR) based on the Cockcroft and Gault, Modification of Diet in Renal Disease Study (MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations, while CysC was measured to calculated eGFR based on a CysC-based equation. We then evaluated the correlations between serum CysC level, eGFR, and obstetric outcomes. Results: Twenty-six patients were evaluated of which 38.5% delivered preterm and 30.8% had low-birth weight babies. Unlike creatinine-based eGFR and CysC-based eGFR, serum CysC demonstrate significant negative correlation with gestational age. Receiver operating characteristic curve analysis indicated that serum CysC is a potential biomarker of preterm delivery with a cut-off serum level of 1.48 mg/L with 80% sensitivity and 75% specificity. Conclusion: GFR estimation using CysC is likely to be inaccurate in pregnancy. However, we found a significant correlation between preterm delivery and serum CysC level. Our results suggest that serum CysC level has the potential to predict preterm delivery in severe preeclampsia patients.

Isolation and Identification of Postharvest Spoilage Fungi from Mulberry Fruit in Korea

  • Kwon, O-Chul;Ju, Wan-Taek;Kim, Hyun-Bok;Sung, Gyoo-Byung;Kim, Yong-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.221-228
    • /
    • 2018
  • BACKGROUND: Spoilage fungi can reduce the shelf life of fresh fruits and cause economic losses by lowering quality. Especially, mulberry fruits have high sensitivity to fungal attack due to their high water content (> 70%) and soft texture. In addition, the surface of these fruits is prone to damage during harvesting and postharvest handling. However, any study on postharvest spoilage fungi in mulberry fruit has not been reported in Korea. This study aimed to examine the spoilage fungi occurring in mulberry fruits during storage after harvest. METHODS AND RESULTS: In this study, we isolated postharvest spoilage fungi from mulberry fruits stored in refrigerator (fresh fruits) and deep-freezer (frozen fruits) and identified them. In the phylogenetic analysis based on comparisons of the ITS rDNA sequences, the 18 spoilage fungi isolated from mulberry fruits and the 25 reference sequences were largely divided into seven groups that were subsequently verified by high bootstrap analysis of 73 to 100. Alternaria spp. including A. alternate and A. tenuissima, were the most frequently isolated fungi among the spoilage isolates: its occurrence was the highest among the 18 isolates (38.9%). CONCLUSION: The findings of this study will be helpful for increasing the shelf life of mulberry fruits through the application of appropriate control measures against infection by spoilage fungi during storage.

Antidiabetic Effects of Mixed Extract from Dendropanax morbiferus, Broussonetia kazinoki, and Cudrania tricuspidata (황칠, 닥나무, 꾸지뽕 혼합 추출물의 항당뇨 효과)

  • Kim, Sol;Kim, Sang-Jun;Oh, Junseok;Hong, Jae-Heoi;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.27 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Dengropanax morfiferus (D), Broussonitia kazinoki (B), and Cudriania tricuspidata (E), a widely cultivated species in South Korea, has been used as traditional medicine to treat numerous diseases. In this study, we evaluated the antidiabetic effects in a various signaling mechanisms using mixed extract and major component contents were analyzed by HPLC in the combined extracts from Dengropanax morfiferus, Broussonitia kazinoki, and Cudriania tricuspidata (DBCE). DBCE inhibited ${\alpha}$-glucosidase and ${\alpha}$-amylase activation and showed potent antioxidant effects, which are evaluated using DPPH, ABTS, and SOD assay. Cytokines, which are released by inflammatory cells in pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. DBCE showed the protective effects in RINm5F cells against cytokines-induced damage by suppressing inducible nitric oxide (NO) synthase and COX-2 expression and NO production. Insulin resistance is the primary characteristic of type 2 diabetes. Therefore, the regulatory effect of DBCE on glucose uptake and production are investigated in insulin-responsive human HepG2 cells. DBCE stimulated glucose uptake, prevented Glut2 and phosphor-IRS1 downregulation induced by high glucose (HG, 30 mM). Moreover, DBCE pretreatment diminished glucose levels, PEPCK and G6Pase overexpression provoked by HG. These findings suggest that DBCE might be used for diabetes treatment through alpha-glucosidase or alpha-amylase activity regulation, pancreatic beta cell protection, hepatic glucose sensitivity improvement. Cytokines, which are released by inflammatory cells' infiltrations around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus.

Development of Evaluation Model of Pumping and Drainage Station Using Performance Degradation Factors (농업기반시설물 양·배수장의 성능저하 요인분석 및 성능평가 모델 개발)

  • Lee, Jonghyuk;Lee, Sangik;Jeong, Youngjoon;Lee, Jemyung;Yoon, Seongsoo;Park, Jinseon;Lee, Byeongjoon;Lee, Joongu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.75-86
    • /
    • 2019
  • Recently, natural disasters due to abnormal climates are frequently outbreaking, and there is rapid increase of damage to aged agricultural infrastructure. As agricultural infrastructure facilities are in contact with water throughout the year and the number of them is significant, it is important to build a maintenance management system. Especially, the current maintenance management system of pumping and drainage stations among the agricultural facilities has the limit of lack of objectivity and management personnel. The purpose of this study is to develop a performance evaluation model using the factors related to performance degradation of pumping and drainage facilities and to predict the performance of the facilities in response to climate change. In this study, we focused on the pumping and drainage stations belonging to each climatic zone separated by the Korea geographical climatic classification system. The performance evaluation model was developed using three different statistical models of POLS, RE, and LASSO. As the result of analysis of statistical models, LASSO was selected for the performance evaluation model as it solved the multicollinearity problem between variables, and showed the smallest MSE. To predict the performance degradation due to climate change, the climate change response variables were classified into three categories: climate exposure, sensitivity, and adaptive capacity. The performance degradation prediction was performed at each facility using the developed performance evaluation model and the climate change response variables.