DOI QR코드

DOI QR Code

Isolation and Identification of Postharvest Spoilage Fungi from Mulberry Fruit in Korea

  • Kwon, O-Chul (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ju, Wan-Taek (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Hyun-Bok (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Sung, Gyoo-Byung (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yong-Soon (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2018.06.22
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

BACKGROUND: Spoilage fungi can reduce the shelf life of fresh fruits and cause economic losses by lowering quality. Especially, mulberry fruits have high sensitivity to fungal attack due to their high water content (> 70%) and soft texture. In addition, the surface of these fruits is prone to damage during harvesting and postharvest handling. However, any study on postharvest spoilage fungi in mulberry fruit has not been reported in Korea. This study aimed to examine the spoilage fungi occurring in mulberry fruits during storage after harvest. METHODS AND RESULTS: In this study, we isolated postharvest spoilage fungi from mulberry fruits stored in refrigerator (fresh fruits) and deep-freezer (frozen fruits) and identified them. In the phylogenetic analysis based on comparisons of the ITS rDNA sequences, the 18 spoilage fungi isolated from mulberry fruits and the 25 reference sequences were largely divided into seven groups that were subsequently verified by high bootstrap analysis of 73 to 100. Alternaria spp. including A. alternate and A. tenuissima, were the most frequently isolated fungi among the spoilage isolates: its occurrence was the highest among the 18 isolates (38.9%). CONCLUSION: The findings of this study will be helpful for increasing the shelf life of mulberry fruits through the application of appropriate control measures against infection by spoilage fungi during storage.

Keywords

References

  1. Akhtar, N., Anjum, T., & Jabeen R. (2013). Isolation and identification of storage fungi from citrus sampled from major growing areas of Punjab, Pakistan. International Journal of Agriculture and Biology, 15(6), 1283-1288.
  2. Al-Hindi, R. R., Al-Najada, A. R., & Mohamed, S. A. (2011). Isolation and identification of some fruit spoilage fungi: Screening of plant cell wall degrading enzymes. African Journal of Microbiology Research, 5(4), 443--448..
  3. Alwakeel, S. S. (2013). Molecular identification of isolated fungi from stored apples in Riyadh, Saudi Arabia. Saudi Journal of Biological Sciences, 20(4), 311-317. https://doi.org/10.1016/j.sjbs.2013.05.002
  4. Bae, S. H., & Suh, H. J. (2007). Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Science and Technology, 40(6), 955-962. https://doi.org/10.1016/j.lwt.2006.06.007
  5. Barth, M., Hankinson, T. R., Zhuang, H., & Breidt, F. (2009). Microbiological spoilage of fruits and vegetables. (eds. Sperber, W. H., Doyle, M. P.), pp. 135-183. Compendium of the Microbiological Spoilage of Foods and Beverages, Springer, New York, USA.
  6. Botella, L., & Diez, J. J. (2011). Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers, 47(1), 9-18. https://doi.org/10.1007/s13225-010-0061-1
  7. Bukovska, P., Jelinkova, M., Hrselova, H., Sykorova, Z., & Gryndler, M. (2010). Terminal restriction fragment length measurement errors are affected mainly by fragment length, G+C nucleotide content and secondary structure melting point. Journal of Microbiological Methods, 82(3), 223-228. https://doi.org/10.1016/j.mimet.2010.06.007
  8. Buzina, W., Braun, H., Freudenschuss, K., Lackner, A., Habermann, W., & Stammberger, H. (2003). Fungal biodiversity-as found in nasal mucus. Medical Mycology, 41(2), 149-161. https://doi.org/10.1080/714043911
  9. Cao, H., But, P. P., & Shaw, P. C. (1998). Methodological studies on genomic DNA extraction and purification from plant drug materials. Journal of Chinese Pharmaceutical Sciences, 7, 130-137.
  10. Chu, Q., Lin, M., Tian, X., & Ye, J. (2006). Study on capillary electrophoresis-amperometric detection profiles of different parts of Morus alba L. Journal of Chromatography A, 1116(1-2), 286-290. https://doi.org/10.1016/j.chroma.2006.03.118
  11. Crous, P. W., & Groenewald, J. Z. (2013). A phylogenetic re-evaluation of Arthrinium. IMA Fungus, 4 (1), 133-154. https://doi.org/10.5598/imafungus.2013.04.01.13
  12. Dombrink-Kurtzman, M. A. (2007). The sequence of the isoepoxydon dehydrogenase gene of the patulin biosynthetic pathway in Penicillium species. Antonie Van Leeuwenhoek, 91(2), 179-189. https://doi.org/10.1007/s10482-006-9109-3
  13. Ercisli, S., & Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103(4), 1380-1384. https://doi.org/10.1016/j.foodchem.2006.10.054
  14. Etebu, E., & Benjamin, D. F. (2014). Inhibitory effect of Irvingia fruit waste extracts on some postharvest spoilage fungi. Food Science and Quality Management, 25, 36-42.
  15. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  16. Haugland, R. A., Varma, M., Wymer, L. J., & Vesper, S. J. (2004). Quantitative PCR analysis of selected Aspergillus, Penicillium and Paecilomyces species. Systematic and Applied Microbiology, 27(2), 198-210. https://doi.org/10.1078/072320204322881826
  17. He, N., Zhang, C., Qi, X., Zhao, S., Tao, Y., Yang, G., Lee, T. H., Wang, X., Cai, Q., Li, D., Lu, M., Liao, S., Luo, G., He, R., Tan, X., Xu, Y., Li, T., Zhao, A., Jia, L., Fu, Q., Gao, C., Ma, B., Liang, J., Wang, X., Shang, J., Song, P., Wu, H., Fan, L., Wang, Q., Shuai, Q., Zhu, J., Wei, C., Zhu-Salzman, K., Jin, D., Wang, J., Liu, T., Yu, M., Tang, C., Wang, Z., Dai, F., Chen, J., Liu, Y., Zhao, S., Lin, T., Zhang, S., Wang, J., Wang, J., Yang, H., Yang, G., Wang, J., Paterson, A. H., Xia, Q., Ji, D., & Xiang, Z. (2013). Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, 4, 1-9.
  18. Hu, H., Shen, W., & Li, P. (2014). Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. International Journal of Food Science and Technology, 49(2), 399-409. https://doi.org/10.1111/ijfs.12313
  19. Jang, Y., Huh, N., Lee, J., Lee, J. S., Kim, G. H., & Kim, J. J. (2011). Phylogenetic analysis of major molds inhabiting woods and their discoloration characteristics. Part 2. Genus penicillium. Holzforschung, 65, 265-270.
  20. Jelic, M., Klobucar, G. I., Grandjean, F., Puillandre, N., Franjevic, D., Futo, M., Amouret, J., & Maguire, I. (2016). Insights into the molecular phylogeny and historical biogeography of the white-clawed crayfish (Decapoda, Astacidae). Molecular Phylogenetics and Evolution, 103, 26-40. https://doi.org/10.1016/j.ympev.2016.07.009
  21. Jeong, J. H., Lee, N. K., Cho, S. H., & Jeong, Y. S. (2014). Enhancement of 1-deoxynojirimycin content and ${\alpha}$-glucosidase inhibitory activity in mulberry leaf using various fermenting microorganisms isolated from Korean traditional fermented food. Biotechnology and Bioprocess Engineering, 19(6), 1114-1118. https://doi.org/10.1007/s12257-014-0277-0
  22. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054
  23. Lakshman, D., Pandey, R., Slovin, J., Vieira, P., & Kamo, K. (2017). Symptom development in response to combined infection of in vitro grown Lilium longiflorum with the root lesion nematode Pratylenchus penetrans and soilborne fungi collected from diseased roots of field-grown lilies. Plant Disease, 101, 882-889. https://doi.org/10.1094/PDIS-09-16-1336-RE
  24. Onuorah, S., & Orji, M. U. (2015). Fungi Associated with the Spoilage of Post-harvest Tomato Fruits Sold in Major Markets in Awka, Nigeria. Universal Journal of Microbiology Research, 3(2), 11-16.
  25. Pawlowska, A. M., Oleszek, W., & Braca, A. (2008). Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. Journal of Agricultural and Food Chemistry, 56(9), 3377-3380. https://doi.org/10.1021/jf703709r
  26. Priya, S. (2012). Medicinal values of mulberry-An overview. Journal of Pharmacy Research, 5(7), 3588-9356.
  27. Pu, X., Qu, X., Chen, F., Bao, J., Zhang, G., & Luo, Y. (2013). Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Applied Microbiology and Biotechnology, 97(21), 9365-9375. https://doi.org/10.1007/s00253-013-5163-8
  28. Qin, C., Li, Y., Niu, W., Ding, Y., Zhang, R., & Shang, X. (2010). Analysis and characterization of anthocyanins in mulberry fruit. Czech Journal of Food Sciences, 28(2), 117-126. https://doi.org/10.17221/228/2008-CJFS
  29. Rahi, S., Jerin, I., Sajib, S. A., Islam, S., Chadni, Z., Hoque, F., & Reza., A. (2017). Isolation, characterization and control of a fungus responsible for post-harvest mango spoilage from northern region of Bangladesh. International Journal of Biosciences, 11(5), 260-269. https://doi.org/10.12692/ijb/11.5.260-269
  30. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
  31. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque C. A, Chen W,. & Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109
  32. Shrestha, P., Szaro, T. M., Bruns, T. D., & Taylor, J. W. (2011). Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field. Applied and Environmental Microbiology, 77(15), 5490-5504. https://doi.org/10.1128/AEM.02996-10
  33. Thiyam, B., & Sharma, G. D. (2013). Isolation and identification of fungi associated with local fruits of Barak Valley, Assam. Current World Environment, 8(2), 319-322. https://doi.org/10.12944/CWE.8.2.20
  34. Tournas, V. H., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105(1), 11-17. https://doi.org/10.1016/j.ijfoodmicro.2005.05.002
  35. Wang, R., Satyanarayan, R. S. D., Vijaya, G. S. R., & Gariepy, Y. (2013). Improving mulberry shelf-life using PEAK fresh package in cold environment, Journal of Food Research and Technology, 1(2), 73-79.
  36. Wasano, N., Konno, K., Nakamura, M., Hirayama, C., Hattori, M., & Tateishi, K. (2009). A unique latex protein, MLX56, defends mulberry trees from insects. Phytochemistry, 70(7), 880-888. https://doi.org/10.1016/j.phytochem.2009.04.014
  37. White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. L. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications, 18(1), 315-322.
  38. Yang, C. H., & Tsai, T. C. (1994). Anthocyanins in mulberry fruit. Food Science, 21, 319-330.
  39. Yun, S. H., Lee, S. H., So, K. K., Kim, J. M., & Kim, D. H. (2016). Incidence of diverse dsRNA mycoviruses in Trichoderma spp. causing green mold disease of shiitake Lentinula edodes. FEMS Microbiology Letters, 363(19), fnw220. https://doi.org/10.1093/femsle/fnw220
  40. Zhang, W., Liu, J. X., & Huo, P. H. (2017). Phoma herbarum causes leaf spots and blight on vetiver grass (Vetiveria zizanioides L.) in southern China. Plant Disease, 101(10), 1823.
  41. Zhu, B., Lou, M. M., Xie, G. L., Wang, G. F., Zhou, Q., Wang, F., Fang, Y., Su, T., Li, B., & Duan, Y. P. (2011). Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. International Journal of Systematic and Evolutionary Microbiology, 61, 2769-2774. https://doi.org/10.1099/ijs.0.028613-0