Browse > Article
http://dx.doi.org/10.5338/KJEA.2018.37.3.24

Isolation and Identification of Postharvest Spoilage Fungi from Mulberry Fruit in Korea  

Kwon, O-Chul (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration)
Ju, Wan-Taek (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration)
Kim, Hyun-Bok (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration)
Sung, Gyoo-Byung (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration)
Kim, Yong-Soon (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Korean Journal of Environmental Agriculture / v.37, no.3, 2018 , pp. 221-228 More about this Journal
Abstract
BACKGROUND: Spoilage fungi can reduce the shelf life of fresh fruits and cause economic losses by lowering quality. Especially, mulberry fruits have high sensitivity to fungal attack due to their high water content (> 70%) and soft texture. In addition, the surface of these fruits is prone to damage during harvesting and postharvest handling. However, any study on postharvest spoilage fungi in mulberry fruit has not been reported in Korea. This study aimed to examine the spoilage fungi occurring in mulberry fruits during storage after harvest. METHODS AND RESULTS: In this study, we isolated postharvest spoilage fungi from mulberry fruits stored in refrigerator (fresh fruits) and deep-freezer (frozen fruits) and identified them. In the phylogenetic analysis based on comparisons of the ITS rDNA sequences, the 18 spoilage fungi isolated from mulberry fruits and the 25 reference sequences were largely divided into seven groups that were subsequently verified by high bootstrap analysis of 73 to 100. Alternaria spp. including A. alternate and A. tenuissima, were the most frequently isolated fungi among the spoilage isolates: its occurrence was the highest among the 18 isolates (38.9%). CONCLUSION: The findings of this study will be helpful for increasing the shelf life of mulberry fruits through the application of appropriate control measures against infection by spoilage fungi during storage.
Keywords
Fungi; Internal transcribed spacer sequences; Mulberry fruit; Phylogenetic analysis; Spoilage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque C. A, Chen W,. & Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6241-6246.   DOI
2 Shrestha, P., Szaro, T. M., Bruns, T. D., & Taylor, J. W. (2011). Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field. Applied and Environmental Microbiology, 77(15), 5490-5504.   DOI
3 Thiyam, B., & Sharma, G. D. (2013). Isolation and identification of fungi associated with local fruits of Barak Valley, Assam. Current World Environment, 8(2), 319-322.   DOI
4 Tournas, V. H., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105(1), 11-17.   DOI
5 Wang, R., Satyanarayan, R. S. D., Vijaya, G. S. R., & Gariepy, Y. (2013). Improving mulberry shelf-life using PEAK fresh package in cold environment, Journal of Food Research and Technology, 1(2), 73-79.
6 Wasano, N., Konno, K., Nakamura, M., Hirayama, C., Hattori, M., & Tateishi, K. (2009). A unique latex protein, MLX56, defends mulberry trees from insects. Phytochemistry, 70(7), 880-888.   DOI
7 White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. L. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications, 18(1), 315-322.
8 Akhtar, N., Anjum, T., & Jabeen R. (2013). Isolation and identification of storage fungi from citrus sampled from major growing areas of Punjab, Pakistan. International Journal of Agriculture and Biology, 15(6), 1283-1288.
9 Al-Hindi, R. R., Al-Najada, A. R., & Mohamed, S. A. (2011). Isolation and identification of some fruit spoilage fungi: Screening of plant cell wall degrading enzymes. African Journal of Microbiology Research, 5(4), 443--448..
10 Alwakeel, S. S. (2013). Molecular identification of isolated fungi from stored apples in Riyadh, Saudi Arabia. Saudi Journal of Biological Sciences, 20(4), 311-317.   DOI
11 Bae, S. H., & Suh, H. J. (2007). Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Science and Technology, 40(6), 955-962.   DOI
12 Barth, M., Hankinson, T. R., Zhuang, H., & Breidt, F. (2009). Microbiological spoilage of fruits and vegetables. (eds. Sperber, W. H., Doyle, M. P.), pp. 135-183. Compendium of the Microbiological Spoilage of Foods and Beverages, Springer, New York, USA.
13 Botella, L., & Diez, J. J. (2011). Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers, 47(1), 9-18.   DOI
14 Yun, S. H., Lee, S. H., So, K. K., Kim, J. M., & Kim, D. H. (2016). Incidence of diverse dsRNA mycoviruses in Trichoderma spp. causing green mold disease of shiitake Lentinula edodes. FEMS Microbiology Letters, 363(19), fnw220.   DOI
15 Zhang, W., Liu, J. X., & Huo, P. H. (2017). Phoma herbarum causes leaf spots and blight on vetiver grass (Vetiveria zizanioides L.) in southern China. Plant Disease, 101(10), 1823.
16 Zhu, B., Lou, M. M., Xie, G. L., Wang, G. F., Zhou, Q., Wang, F., Fang, Y., Su, T., Li, B., & Duan, Y. P. (2011). Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. International Journal of Systematic and Evolutionary Microbiology, 61, 2769-2774.   DOI
17 Chu, Q., Lin, M., Tian, X., & Ye, J. (2006). Study on capillary electrophoresis-amperometric detection profiles of different parts of Morus alba L. Journal of Chromatography A, 1116(1-2), 286-290.   DOI
18 Yang, C. H., & Tsai, T. C. (1994). Anthocyanins in mulberry fruit. Food Science, 21, 319-330.
19 Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
20 Bukovska, P., Jelinkova, M., Hrselova, H., Sykorova, Z., & Gryndler, M. (2010). Terminal restriction fragment length measurement errors are affected mainly by fragment length, G+C nucleotide content and secondary structure melting point. Journal of Microbiological Methods, 82(3), 223-228.   DOI
21 Buzina, W., Braun, H., Freudenschuss, K., Lackner, A., Habermann, W., & Stammberger, H. (2003). Fungal biodiversity-as found in nasal mucus. Medical Mycology, 41(2), 149-161.   DOI
22 Cao, H., But, P. P., & Shaw, P. C. (1998). Methodological studies on genomic DNA extraction and purification from plant drug materials. Journal of Chinese Pharmaceutical Sciences, 7, 130-137.
23 Crous, P. W., & Groenewald, J. Z. (2013). A phylogenetic re-evaluation of Arthrinium. IMA Fungus, 4 (1), 133-154.   DOI
24 Dombrink-Kurtzman, M. A. (2007). The sequence of the isoepoxydon dehydrogenase gene of the patulin biosynthetic pathway in Penicillium species. Antonie Van Leeuwenhoek, 91(2), 179-189.   DOI
25 Ercisli, S., & Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103(4), 1380-1384.   DOI
26 Etebu, E., & Benjamin, D. F. (2014). Inhibitory effect of Irvingia fruit waste extracts on some postharvest spoilage fungi. Food Science and Quality Management, 25, 36-42.
27 Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791.   DOI
28 Hu, H., Shen, W., & Li, P. (2014). Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. International Journal of Food Science and Technology, 49(2), 399-409.   DOI
29 Haugland, R. A., Varma, M., Wymer, L. J., & Vesper, S. J. (2004). Quantitative PCR analysis of selected Aspergillus, Penicillium and Paecilomyces species. Systematic and Applied Microbiology, 27(2), 198-210.   DOI
30 He, N., Zhang, C., Qi, X., Zhao, S., Tao, Y., Yang, G., Lee, T. H., Wang, X., Cai, Q., Li, D., Lu, M., Liao, S., Luo, G., He, R., Tan, X., Xu, Y., Li, T., Zhao, A., Jia, L., Fu, Q., Gao, C., Ma, B., Liang, J., Wang, X., Shang, J., Song, P., Wu, H., Fan, L., Wang, Q., Shuai, Q., Zhu, J., Wei, C., Zhu-Salzman, K., Jin, D., Wang, J., Liu, T., Yu, M., Tang, C., Wang, Z., Dai, F., Chen, J., Liu, Y., Zhao, S., Lin, T., Zhang, S., Wang, J., Wang, J., Yang, H., Yang, G., Wang, J., Paterson, A. H., Xia, Q., Ji, D., & Xiang, Z. (2013). Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, 4, 1-9.
31 Jang, Y., Huh, N., Lee, J., Lee, J. S., Kim, G. H., & Kim, J. J. (2011). Phylogenetic analysis of major molds inhabiting woods and their discoloration characteristics. Part 2. Genus penicillium. Holzforschung, 65, 265-270.
32 Jelic, M., Klobucar, G. I., Grandjean, F., Puillandre, N., Franjevic, D., Futo, M., Amouret, J., & Maguire, I. (2016). Insights into the molecular phylogeny and historical biogeography of the white-clawed crayfish (Decapoda, Astacidae). Molecular Phylogenetics and Evolution, 103, 26-40.   DOI
33 Jeong, J. H., Lee, N. K., Cho, S. H., & Jeong, Y. S. (2014). Enhancement of 1-deoxynojirimycin content and ${\alpha}$-glucosidase inhibitory activity in mulberry leaf using various fermenting microorganisms isolated from Korean traditional fermented food. Biotechnology and Bioprocess Engineering, 19(6), 1114-1118.   DOI
34 Priya, S. (2012). Medicinal values of mulberry-An overview. Journal of Pharmacy Research, 5(7), 3588-9356.
35 Lakshman, D., Pandey, R., Slovin, J., Vieira, P., & Kamo, K. (2017). Symptom development in response to combined infection of in vitro grown Lilium longiflorum with the root lesion nematode Pratylenchus penetrans and soilborne fungi collected from diseased roots of field-grown lilies. Plant Disease, 101, 882-889.   DOI
36 Onuorah, S., & Orji, M. U. (2015). Fungi Associated with the Spoilage of Post-harvest Tomato Fruits Sold in Major Markets in Awka, Nigeria. Universal Journal of Microbiology Research, 3(2), 11-16.
37 Pawlowska, A. M., Oleszek, W., & Braca, A. (2008). Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. Journal of Agricultural and Food Chemistry, 56(9), 3377-3380.   DOI
38 Pu, X., Qu, X., Chen, F., Bao, J., Zhang, G., & Luo, Y. (2013). Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Applied Microbiology and Biotechnology, 97(21), 9365-9375.   DOI
39 Qin, C., Li, Y., Niu, W., Ding, Y., Zhang, R., & Shang, X. (2010). Analysis and characterization of anthocyanins in mulberry fruit. Czech Journal of Food Sciences, 28(2), 117-126.   DOI
40 Rahi, S., Jerin, I., Sajib, S. A., Islam, S., Chadni, Z., Hoque, F., & Reza., A. (2017). Isolation, characterization and control of a fungus responsible for post-harvest mango spoilage from northern region of Bangladesh. International Journal of Biosciences, 11(5), 260-269.   DOI
41 Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874.   DOI