• Title/Summary/Keyword: damage cost function

Search Result 91, Processing Time 0.033 seconds

A Study on the Development of Loss Function to Estimate Damage Cost for Traffic Facilities (교통시설물에 대한 피해액 추정을 위한 손실함수 개발에 관한 연구)

  • Hwang, Shin Bum;Sim, Jun Hyuk;Kim, Sang Ho;Lee, Chang Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.92-92
    • /
    • 2018
  • 기상이변에 따른 호우 태풍의 발생 빈도 및 규모의 증가에 따라 사회시설물 및 인명 피해가 증가되고 있으며, 이러한 피해에 대한 예방 대응 복구 등의 대책 활동에 대한 의사결정 지원을 위하여 피해 예측 및 저감 기술에 대한 다양한 연구가 진행되고 있다. 특히, 피해규모 예측은 가장 기본적으로 수행되어야 할 대책 활동으로 국민 생활에 밀접하게 이용되고 있는 사회기반시설 중 재해 발생 시 복구물자의 이동과 인명 대피에 활용되는 교통시설물의 중요성이 대두되고 있다. 이에 본 연구에서는 국가재난관리시스템(National Disaster Management System, NDMS)과 침수흔적도를 이용하여 교통시설물에 대한 손실함수를 개발하고자 하였다. 개발된 교통시설물에 대한 손실함수는 재해저감 대책을 위한 기초자료로서 의사결정 지원에 활용될 것으로 기대한다.

  • PDF

Fragility-based performance evaluation of mid-rise reinforced concrete frames in near field and far field earthquakes

  • Ansari, Mokhtar;Safiey, Amir;Abbasi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.751-763
    • /
    • 2020
  • Available records of recent earthquakes show that near-field earthquakes have different characteristics than far-field earthquakes. In general, most of these unique characteristics of near-fault records can be attributed to their forward directivity. This phenomenon causes the records of ground motion normal to the fault to entail pulses with long periods in the velocity time history. The energy of the earthquake is almost accumulated in these pulses causing large displacements and, accordingly, severe damages in the building. Damage to structures caused by past earthquakes raises the need to assess the chance of future earthquake damage. There are a variety of methods to evaluate building seismic vulnerabilities with different computational cost and accuracy. In the meantime, fragility curves, which defines the possibility of structural damage as a function of ground motion characteristics and design parameters, are more common. These curves express the percentage of probability that the structural response will exceed the allowable performance limit at different seismic intensities. This study aims to obtain the fragility curve for low- and mid-rise structures of reinforced concrete moment frames by incremental dynamic analysis (IDA). These frames were exposed to an ensemble of 18 ground motions (nine records near-faults and nine records far-faults). Finally, after the analysis, their fragility curves are obtained using the limit states provided by HAZUS-MH 2.1. The result shows the near-fault earthquakes can drastically influence the fragility curves of the 6-story building while it has a minimal impact on those of the 3-story building.

Crack detection in folded plates with back-propagated artificial neural network

  • Oguzhan Das;Can Gonenli;Duygu Bagci Das
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.319-334
    • /
    • 2023
  • Localizing damages is an essential task to monitor the health of the structures since they may not be able to operate anymore. Among the damage detection techniques, non-destructive methods are considerably more preferred than destructive methods since damage can be located without affecting the structural integrity. However, these methods have several drawbacks in terms of detecting abilities, time consumption, cost, and hardware or software requirements. Employing artificial intelligence techniques could overcome such issues and could provide a powerful damage detection model if the technique is utilized correctly. In this study, the crack localization in flat and folded plate structures has been conducted by employing a Backpropagated Artificial Neural Network (BPANN). For this purpose, cracks with 18 different dimensions in thin, flat, and folded structures having 150, 300, 450, and 600 folding angle have been modeled and subjected to free vibration analysis by employing the Classical Plate Theory with Finite Element Method. A Four-nodded quadrilateral element having six degrees of freedom has been considered to represent those structures mathematically. The first ten natural frequencies have been obtained regarding healthy and cracked structures. To localize the crack, the ratios of the frequencies of the cracked flat and folded structures to those of healthy ones have been taken into account. Those ratios have been given to BPANN as the input variables, while the crack locations have been considered as the output variables. A total of 500 crack locations have been regarded within the dataset obtained from the results of the free vibration analysis. To build the best intelligent model, a feature search has been conducted for BAPNN regarding activation function, the number of hidden layers, and the number of hidden neurons. Regarding the analysis results, it is concluded that the BPANN is able to localize the cracks with an average accuracy of 95.12%.

Structural Safety Assessment Using Equation Error Function and Response Error Function (방정식 오차함수와 응답 오차함수를 사용한 구조 안전성 평가)

  • Park, Woo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2819-2830
    • /
    • 2009
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. During experiment much effort and cost is needed for measuring structural safety assessment. The sparseness and errors of measured data have to be considered during the safety estimation of structures. This paper introduces parameter estimation and damage identification algorithm by a system identification using static and dynamic response. The equation error estimator and response error widely used in system identification are based on the minimization of least squared error between measured and calculated responses by a mathematical model of a structure. Since each estimator has a specific form of application in noisy environment and proposes different definitions for these forms. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation, and a data measured pertubation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a dimensional truss type structures.

Light Weight Design of the Commercial Truck Armature Core using the Sequential Response Surface Method (순차적 반응표면법을 이용한 상용 트럭 아마추어 코어 경량화 설계)

  • H. T. Lee;H. G. Kim;S. J. Park;Y. G. Jung;S. M. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2023
  • The armature core is a part responsible for the skeleton of the steering wheel. Currently, in the case of commercial trucks, the main parts of the parts are manufactured separately and then the product is produced through welding. In the case of this production method, quality and cost problems of the welded parts occur, and an integrated armature core made of magnesium alloy is used in passenger vehicles. However, in the case of commercial trucks, there is no application case and research is insufficient. Therefore, this study aims to develop an all-in-one armature core that simultaneously applies a magnesium alloy material and a die casting method to reduce the weight and improve the quality of the existing steel armature core. The product was modeled based on the shape of a commercial product, and finite element analysis (FEA) was performed through Ls-dyna, a general-purpose analysis program. Through digital image correlation (DIC) and uniaxial tensile test, the accurate physical properties of the material were obtained and applied to the analysis. A total of four types of compression were applied by changing the angle and ground contact area of the product according to the actual reliability test conditions. analysis was carried out. As a result of FEA, it was confirmed that damage occurred in the spoke area, and spoke thickness (tspoke), base thickness (tbase), and rim and spoke connection (R) were designated as design variables, and the total weight and maximum equivalent stress occurring in the armature core We specify an objective function that simultaneously minimizes . A prediction function was derived using the sequential response surface method to identify design variables that minimized the objective function, and it was confirmed that it was improved by 22%.

Design of Defect Diagnosis Platform based on CAN Network for Reliability Improvement of Vehicle SoC (차량용 SoC의 신뢰성 향상을 위한 CAN 통신 기반의 고장진단 플랫폼 설계)

  • Hwang, Doyeon;Kim, Dooyoung;Park, Sungju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.47-55
    • /
    • 2015
  • To verify the function of vehicle is becoming more and more difficult because many electronic control units have been embedded in vehicle with development of electronics industry. The reliability of vehicle should be considered above all important because malfunction of vehicle can cause damage of human life. In this paper, defect diagnosis platform based on CAN network is proposed to improve the reliability of vehicle. Reliability of vehicle is significantly increased by adopting the structural test via dedicated test path after manufacturing. Besides, the test cost is reduced because additional test pins are not required.

Beneficial Effect of Bifidobacterium longum ATCC 15707 on Survival Rate of Clostridium difficile Infection in Mice

  • Yun, Bohyun;Song, Minyu;Park, Dong-June;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.368-375
    • /
    • 2017
  • Clostridium difficile infection (CDI) is the main cause of hospital-acquired diarrhea that can cause colitis or even death. The medical-treatment cost and deaths caused by CDI are increasing annually worldwide. New approaches for prevention and treatment of these infections are needed, such as the use of probiotics. Probiotics, including Bifidobacterium spp. and Lactobacillus, are microorganisms that confer a health benefit to the host when administered in adequate amounts. The effect of Bifidobacterium longum ATCC 15707 on infectious disease caused by C. difficile 027 was investigated in a mouse model. The survival rates for mice given the pathogen alone, and with live cells, or dead cells of B. longum were 40, 70, and 60%, respectively. In addition, the intestinal tissues of the B. longum-treated group maintained structural integrity with some degree of damage. These findings suggested that B. longum ATCC 15707 has a function in repressing the infectious disease caused by C. difficile 027.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

Development of Loss Function for Estimation of Flood Damage Cost in Main Public Facilities - Road·Water and Sewerage Facilities - (주요 공공시설물의 홍수피해액 추정을 위한 손실함수 개발 - 도로 및 상·하수도시설물 -)

  • Hwang, Shin Bum;Kim, Sang Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.49-49
    • /
    • 2021
  • 홍수 발생 시 제내지에 존재하는 도로 및 상·하수도시설물은 저지대를 중심으로 생성되는 침수지역이 아닌 대부분 집중호우, 태풍으로 인해 발생한 유출량이 지표면 유출로 이어져 지면 경사를 따라 유하하면서 흐름을 방해하거나 노후된 시설물 등에서 피해가 발생한다. 이러한 피해발생 특성을 고려하여 홍수피해액을 추정하기에는 침수면적과 시설물 현황 등을 활용하는 기존의 손실 함수 개발 방법으로는 부족한 부분이 존재하며, 유수 흐름의 주요 인자인 침수심, 유속 등과 같은 수리특성을 고려하여 시설물에 대한 홍수피해액을 추정하는 방안이 필요하다. 본 연구에서는 수리특성을 고려한 시설물의 홍수피해액을 추정하기 위한 손실함수를 개발하고자 국가재난정보관리시스템(NDMS) DB에서 해당 시설물의 상세주소를 이용하여 피해 발생위치와 피해액을 파악하였으며, 2차원 수리해석 모형인 FLO-2D를 활용하여 시설물의 피해위치에서 발생된 수리특성 인자인 침수심과 유속을 분석하였다. 시설물의 단위면적 당 피해액을 종속변수로, 분석된 평균 침수심과 평균 유속을 독립변수로 선정한 후 변수 자료들의 신뢰성과 함수의 설명력을 향상시키기 위하여 이상자료들을 제거한 후 손실함수를 개발하였다. 본 연구에서 개발된 손실함수는 수리특성 인자인 침수심과 유속에 의하여 홍수피해액을 직접적으로 추정하는 방법으로 향후 홍수재해에 대한 사전 재산피해 추정을 통하여 합리적인 선제적 예방조치 등의 홍수재해 예방 활동 등에 활용될 수 있을 것으로 기대한다.

  • PDF

Brain-Derived Neurotrophic Factor and Brain Plasticity: Non-Pharmacological Intervention (뇌유래신경영양인자와 뇌 신경가소성: 비약물적 개입)

  • Nak-Young Kim;Hyun Kook Lim
    • Korean Journal of Biological Psychiatry
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • Many psychiatric disorders are associated with brain functional dysfunctions and neuronal degeneration. According to the research so far, enhanced brain plasticity reduces neurodegeneration and recovers neuronal damage. Brain-derived neurotrophic factor (BDNF) is one of the most extensively studied neurotrophins in the mammalian brain that plays major roles in neuronal survival, development, growth, and maintenance of neurons in brain circuits related to emotion and cognitive function. Also, BDNF plays an important role in brain plasticity, influencing dendritic spines in the hippocampus neurogenesis. Changes in neurogenesis and dendritic density can improve psychiatric symptoms and cognitive functions. BDNF has potent effects on brain plasticity through biochemical mechanisms, cellular signal pathways, and epigenetic changes. There are pharmacological and non-pharmacological interventions to increase the expression of BDNF and enhance brain plasticity. Non-pharmacological interventions such as physical exercise, nutritional change, environmental enrichment, and neuromodulation have biological mechanisms that increase the expression of BDNF and brain plasticity. Non-pharmacological interventions are cost-effective and safe ways to improve psychiatric symptoms.