Browse > Article
http://dx.doi.org/10.5851/kosfa.2017.37.3.368

Beneficial Effect of Bifidobacterium longum ATCC 15707 on Survival Rate of Clostridium difficile Infection in Mice  

Yun, Bohyun (Microbial Safety Team, Agro-Food Safety & Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration)
Song, Minyu (Animal Products Research and Development Division, National Institute of Animal Science, RDA)
Park, Dong-June (Food Research Institute)
Oh, Sejong (Division of Animal Science, Chonnam National University)
Publication Information
Food Science of Animal Resources / v.37, no.3, 2017 , pp. 368-375 More about this Journal
Abstract
Clostridium difficile infection (CDI) is the main cause of hospital-acquired diarrhea that can cause colitis or even death. The medical-treatment cost and deaths caused by CDI are increasing annually worldwide. New approaches for prevention and treatment of these infections are needed, such as the use of probiotics. Probiotics, including Bifidobacterium spp. and Lactobacillus, are microorganisms that confer a health benefit to the host when administered in adequate amounts. The effect of Bifidobacterium longum ATCC 15707 on infectious disease caused by C. difficile 027 was investigated in a mouse model. The survival rates for mice given the pathogen alone, and with live cells, or dead cells of B. longum were 40, 70, and 60%, respectively. In addition, the intestinal tissues of the B. longum-treated group maintained structural integrity with some degree of damage. These findings suggested that B. longum ATCC 15707 has a function in repressing the infectious disease caused by C. difficile 027.
Keywords
Clostridium difficile; Bifidobacterium longum ATCC 15707; infection model; probiotics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gan, F., Chen, X., Liao, S. F., Lv, C., Ren, F., Ye, G., Pan, C., Huang, D., Shi, J., Shi, X., Zhou, H., and Huang, K. (2014) Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. J. Agric. Food Chem. 62, 4502-4508.   DOI
2 George, W. L., Sutter, V. L., Citron, D., and Finegold, S. M. (1979) Selective and differential medium for isolation of Clostridium difficile. J. Clin. Microbiol. 9, 214-219.
3 Guslandi, M., Mezzi, G., Sorghi, M., and Testoni, P. A. (2000) Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig. Dis. Sci. 45, 1462-1464.   DOI
4 Hickson, M., D'Souza, A. L., Muthu, N., Rogers, T. R., Want, S., Rajkumar, C., and Bulpitt, C. J. (2007) Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: Randomised double blind placebo controlled trial. BMJ 335, 80.   DOI
5 Johnston, B. C., Ma, S. S., Goldenberg, J. Z., Thorlund, K., Vandvik, P. O., Loeb, M., and Guyatt, G. H. (2012) Probiotics for the prevention of Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Ann. Intern. Med. 157, 878-888.   DOI
6 Kim, Y., Lee, J. W., Kang, S. G., Oh, S., and Griffiths, M. W. (2012) Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7. Anaerobe. 18, 539-545.   DOI
7 Kondepudi, K. K., Ambalam, P., Nilsson, I., Wadstrom, T., and Ljungh, A. (2012) Prebiotic-non-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe. 18, 489-497.   DOI
8 Liu, R., Suarez, J. M., Weisblum, B., Gellman, S. H., and Mc-Bride, S. M. (2014) Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth. J. Am. Chem. Soc. 136, 14498-14504.   DOI
9 Louie, T. J., Miller, M. A., Mullane, K. M., Weiss, K., Lentnek, A., Golan, Y., Gorbach, S., Sears, P., and Shue, Y. K. (2011) Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 364, 422-431.   DOI
10 Yin, N., Li, J., He, Y., Herradura, P., Pearson, A., Mesleh, M. F., Mascio, C. T., Howland, K., Steenbergen, J., Thorne, G. M., Citron, D., Van Praagh, A. D. G., Mortin, L. I., Keith, D., Silverman, J., and Metcalf, C. (2015) Structure-activity relationship studies of a series of semisynthetic lipopeptides leading to the discovery of surotomycin, a novel cyclic lipopeptide being developed for the treatment of Clostridium difficileassociated diarrhea. J. Med. Chem. 58, 5137-5142.   DOI
11 Matsuguchi, T., Takagi, A., Matsuzaki, T., Nagaoka, M., Ishikawa, K., Yokokura, T., and Yoshikai, Y. (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10, 259-266.
12 Rossland, E., Andersen Borge, G. I., Langsrud, T., and Sorhaug, T. (2003) Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int. J. Food Microbiol. 89, 205-212.   DOI
13 McFarland, L. V. (2006) Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am. J. Gastroenterol. 101, 812-822.   DOI
14 Mullane, K. M., Miller, M. A., Weiss, K., Lentnek, A., Golan, Y., Sears, P. S., Shue, Y. K., Louie, T. J., and Gorbach, S. L. (2011) Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. Clin. Infect. Dis. 53, 440-447.   DOI
15 Plummer, S., Weaver, M. A., Harris, J. C., Dee, P., and Hunter, J. (2010) Clostridium difficile pilot study: Effects of probiotic supplementation on the incidence of C. difficile diarrhoea. Int. Microbiol. 7, 59-62.
16 Ridwan, B. U., Koning, C. J., Besselink, M. G., Timmerman, H. M., Brouwer, E. C., Verhoef, J., Gooszen, H. G., and Akkermans, L. M. (2008) Antimicrobial activity of a multispecies probiotic (Ecologic 641) against pathogens isolated from infected pancreatic necrosis. Lett. Appl. Microbiol. 46, 61-67.
17 Teraguchi, S., Uhara, M., Ogasa, K., and Mitsuoka, T. (1978) Enumeration of bifidobacteria in dairy products. Jpn. J. Bacteriol. 33, 753-761.   DOI
18 Surawicz, C. M., Brandt, L. J., Binion, D. G., Ananthakrishnan, A. N., Curry, S. R., Gilligan, P. H., McFarland, L. V., Mellow, M., and Zuckerbraun, B. S. (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 108, 478-498.   DOI
19 Szajewska, H., Kotowska, M., Mrukowicz, J. Z., Arma, M., and Mikolajczyk, W. (2001) Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. J. Pediatr. 138, 361-365.   DOI
20 Tejero-Sarinena, S., Barlow, J., Costabile, A., Gibson, G. R., and Rowland, I. (2012) In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe. 18, 530-538.   DOI
21 Toure, R., Kheadr, E., Lacroix, C., Moroni, O., and Fliss, I. (2003) Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J. Appl. Microbiol. 95, 1058-1069.   DOI
22 Wolvers, D., Antoine, J. M., Myllyluoma, E., Schrezenmeir, J., Szajewska, H., and Rijkers, G. T. (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: Prevention and management of infections by probiotics. J. Nutr. 140, 698S-712S.   DOI
23 Biller, J. A., Katz, A. J., Flores, A. F., Buie, T. M., and Gorbach, S. L. (1995) Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. J. Pediatr. Gastroenterol. Nutr. 21, 224-226.   DOI
24 Yuan, J., Wang, B., Sun, Z., Bo, X., Yuan, X., He, X., Zhao, H., Du, X., Wang, F., Jiang, Z., Zhang, L., Jia, L., Wang, Y., Wei, K., Wang, J., Zhang, X., Sun, Y., Huang, L., and Zeng, M. (2008) Analysis of host-inducing proteome changes in Bifidobacterium longum NCC2705 grown in vivo. J. Proteome Res. 7, 375-385.   DOI
25 Yun, B., Oh, S., and Griffiths, M. W. (2014) Lactobacillus acidophilus modulates the virulence of Clostridium difficile. J. Dairy Sci. 97, 4745-4758.   DOI
26 Yun, B., Oh, S., Song, M., Hong, Y. S., Park, S., Park, D. J., Griffiths, M. W., and Oh, S. (2015) Inhibitory effect of epigallocatechin gallate on the virulence of Clostridium difficile PCR ribotype 027. J. Food Sci. 80, M2925-M2931.   DOI
27 Annuk, H., Shchepetova, J., Kullisaar, T., Songisepp, E., Zilmer, M., and Mikelsaar. M. (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J. Appl. Microbiol. 94, 403-412.   DOI
28 Asahara, T., Shimizu, K., Nomoto, K., Hamabata, T., Ozawa, A., and Takeda, Y. (2004) Probiotic bifidobacteria protect mice from lethal infection with shiga toxin-producing Escherichia coli O157:H7. Infect. Immun. 72, 2240-2247.   DOI
29 Badger, V. O., Ledeboer, N. A., Graham, M. B., and Edmiston, C. E. (2012) Clostridium difficile: Epidemiology, pathogenesis, management, and prevention of a recalcitrant healthcare-associated pathogen. J. Parenter. Enteral. Nutr. 36, 645-662.   DOI
30 Bezkorovainy, A. (1989) Nutrition and metabolism of bifidobacteria. In: Biochemistry and physiology of bifidobacteria. Miller-Catchpole, R. (eds) CRC press. Boca Raton, FL. pp. 93-129.
31 Buts, J. P., Corthier, G., and Delmee, M. (1993) Saccharomyces boulardii for Clostridium difficile-associated enteropathies in infants. J. Pediatr. Gastroenterol. Nutr. 16, 419-425.   DOI
32 Chen, X., Katchar, K., Goldsmith, J. D., Nanthakumar, N., Cheknis, A., Gerding, D. N., and Kelly, C. P. (2008) A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984-1992.   DOI
33 De Vuyst, L., Vrancken, G., Ravyts, F., Rimaux, T., and Weckx, S. (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 26, 666-675.   DOI
34 Collado, M. C., Gonzalez, A., Gonzalez, R., Hernandez, M., Ferrus, M. A., and Sanz, Y. (2005) Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori. Int. J. Antimicrob. Agents 25, 385-391.   DOI
35 Cornely, O. A., Miller, M. A., Louie, T. J., Crook, D. W., and Gorbach, S. L. (2012) Treatment of first recurrence of Clostridium difficile infection: Fidaxomicin versus vancomycin. Clin. Infect. Dis. 55, S154-S161.   DOI