DOI QR코드

DOI QR Code

Beneficial Effect of Bifidobacterium longum ATCC 15707 on Survival Rate of Clostridium difficile Infection in Mice

  • Yun, Bohyun (Microbial Safety Team, Agro-Food Safety & Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Song, Minyu (Animal Products Research and Development Division, National Institute of Animal Science, RDA) ;
  • Park, Dong-June (Food Research Institute) ;
  • Oh, Sejong (Division of Animal Science, Chonnam National University)
  • Received : 2017.03.07
  • Accepted : 2017.05.08
  • Published : 2017.06.30

Abstract

Clostridium difficile infection (CDI) is the main cause of hospital-acquired diarrhea that can cause colitis or even death. The medical-treatment cost and deaths caused by CDI are increasing annually worldwide. New approaches for prevention and treatment of these infections are needed, such as the use of probiotics. Probiotics, including Bifidobacterium spp. and Lactobacillus, are microorganisms that confer a health benefit to the host when administered in adequate amounts. The effect of Bifidobacterium longum ATCC 15707 on infectious disease caused by C. difficile 027 was investigated in a mouse model. The survival rates for mice given the pathogen alone, and with live cells, or dead cells of B. longum were 40, 70, and 60%, respectively. In addition, the intestinal tissues of the B. longum-treated group maintained structural integrity with some degree of damage. These findings suggested that B. longum ATCC 15707 has a function in repressing the infectious disease caused by C. difficile 027.

Keywords

References

  1. Annuk, H., Shchepetova, J., Kullisaar, T., Songisepp, E., Zilmer, M., and Mikelsaar. M. (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J. Appl. Microbiol. 94, 403-412. https://doi.org/10.1046/j.1365-2672.2003.01847.x
  2. Asahara, T., Shimizu, K., Nomoto, K., Hamabata, T., Ozawa, A., and Takeda, Y. (2004) Probiotic bifidobacteria protect mice from lethal infection with shiga toxin-producing Escherichia coli O157:H7. Infect. Immun. 72, 2240-2247. https://doi.org/10.1128/IAI.72.4.2240-2247.2004
  3. Badger, V. O., Ledeboer, N. A., Graham, M. B., and Edmiston, C. E. (2012) Clostridium difficile: Epidemiology, pathogenesis, management, and prevention of a recalcitrant healthcare-associated pathogen. J. Parenter. Enteral. Nutr. 36, 645-662. https://doi.org/10.1177/0148607112446703
  4. Bezkorovainy, A. (1989) Nutrition and metabolism of bifidobacteria. In: Biochemistry and physiology of bifidobacteria. Miller-Catchpole, R. (eds) CRC press. Boca Raton, FL. pp. 93-129.
  5. Biller, J. A., Katz, A. J., Flores, A. F., Buie, T. M., and Gorbach, S. L. (1995) Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. J. Pediatr. Gastroenterol. Nutr. 21, 224-226. https://doi.org/10.1097/00005176-199508000-00016
  6. Buts, J. P., Corthier, G., and Delmee, M. (1993) Saccharomyces boulardii for Clostridium difficile-associated enteropathies in infants. J. Pediatr. Gastroenterol. Nutr. 16, 419-425. https://doi.org/10.1097/00005176-199305000-00013
  7. Chen, X., Katchar, K., Goldsmith, J. D., Nanthakumar, N., Cheknis, A., Gerding, D. N., and Kelly, C. P. (2008) A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984-1992. https://doi.org/10.1053/j.gastro.2008.09.002
  8. Collado, M. C., Gonzalez, A., Gonzalez, R., Hernandez, M., Ferrus, M. A., and Sanz, Y. (2005) Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori. Int. J. Antimicrob. Agents 25, 385-391. https://doi.org/10.1016/j.ijantimicag.2005.01.017
  9. Cornely, O. A., Miller, M. A., Louie, T. J., Crook, D. W., and Gorbach, S. L. (2012) Treatment of first recurrence of Clostridium difficile infection: Fidaxomicin versus vancomycin. Clin. Infect. Dis. 55, S154-S161. https://doi.org/10.1093/cid/cis462
  10. De Vuyst, L., Vrancken, G., Ravyts, F., Rimaux, T., and Weckx, S. (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 26, 666-675. https://doi.org/10.1016/j.fm.2009.07.012
  11. Gan, F., Chen, X., Liao, S. F., Lv, C., Ren, F., Ye, G., Pan, C., Huang, D., Shi, J., Shi, X., Zhou, H., and Huang, K. (2014) Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. J. Agric. Food Chem. 62, 4502-4508. https://doi.org/10.1021/jf501065d
  12. George, W. L., Sutter, V. L., Citron, D., and Finegold, S. M. (1979) Selective and differential medium for isolation of Clostridium difficile. J. Clin. Microbiol. 9, 214-219.
  13. Guslandi, M., Mezzi, G., Sorghi, M., and Testoni, P. A. (2000) Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig. Dis. Sci. 45, 1462-1464. https://doi.org/10.1023/A:1005588911207
  14. Hickson, M., D'Souza, A. L., Muthu, N., Rogers, T. R., Want, S., Rajkumar, C., and Bulpitt, C. J. (2007) Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: Randomised double blind placebo controlled trial. BMJ 335, 80. https://doi.org/10.1136/bmj.39231.599815.55
  15. Johnston, B. C., Ma, S. S., Goldenberg, J. Z., Thorlund, K., Vandvik, P. O., Loeb, M., and Guyatt, G. H. (2012) Probiotics for the prevention of Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Ann. Intern. Med. 157, 878-888. https://doi.org/10.7326/0003-4819-157-12-201212180-00563
  16. Kim, Y., Lee, J. W., Kang, S. G., Oh, S., and Griffiths, M. W. (2012) Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7. Anaerobe. 18, 539-545. https://doi.org/10.1016/j.anaerobe.2012.08.006
  17. Kondepudi, K. K., Ambalam, P., Nilsson, I., Wadstrom, T., and Ljungh, A. (2012) Prebiotic-non-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe. 18, 489-497. https://doi.org/10.1016/j.anaerobe.2012.08.005
  18. Liu, R., Suarez, J. M., Weisblum, B., Gellman, S. H., and Mc-Bride, S. M. (2014) Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth. J. Am. Chem. Soc. 136, 14498-14504. https://doi.org/10.1021/ja506798e
  19. Louie, T. J., Miller, M. A., Mullane, K. M., Weiss, K., Lentnek, A., Golan, Y., Gorbach, S., Sears, P., and Shue, Y. K. (2011) Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 364, 422-431. https://doi.org/10.1056/NEJMoa0910812
  20. Matsuguchi, T., Takagi, A., Matsuzaki, T., Nagaoka, M., Ishikawa, K., Yokokura, T., and Yoshikai, Y. (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10, 259-266.
  21. McFarland, L. V. (2006) Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am. J. Gastroenterol. 101, 812-822. https://doi.org/10.1111/j.1572-0241.2006.00465.x
  22. Mullane, K. M., Miller, M. A., Weiss, K., Lentnek, A., Golan, Y., Sears, P. S., Shue, Y. K., Louie, T. J., and Gorbach, S. L. (2011) Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. Clin. Infect. Dis. 53, 440-447. https://doi.org/10.1093/cid/cir404
  23. Plummer, S., Weaver, M. A., Harris, J. C., Dee, P., and Hunter, J. (2010) Clostridium difficile pilot study: Effects of probiotic supplementation on the incidence of C. difficile diarrhoea. Int. Microbiol. 7, 59-62.
  24. Rossland, E., Andersen Borge, G. I., Langsrud, T., and Sorhaug, T. (2003) Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int. J. Food Microbiol. 89, 205-212. https://doi.org/10.1016/S0168-1605(03)00149-1
  25. Ridwan, B. U., Koning, C. J., Besselink, M. G., Timmerman, H. M., Brouwer, E. C., Verhoef, J., Gooszen, H. G., and Akkermans, L. M. (2008) Antimicrobial activity of a multispecies probiotic (Ecologic 641) against pathogens isolated from infected pancreatic necrosis. Lett. Appl. Microbiol. 46, 61-67.
  26. Surawicz, C. M., Brandt, L. J., Binion, D. G., Ananthakrishnan, A. N., Curry, S. R., Gilligan, P. H., McFarland, L. V., Mellow, M., and Zuckerbraun, B. S. (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 108, 478-498. https://doi.org/10.1038/ajg.2013.4
  27. Szajewska, H., Kotowska, M., Mrukowicz, J. Z., Arma, M., and Mikolajczyk, W. (2001) Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. J. Pediatr. 138, 361-365. https://doi.org/10.1067/mpd.2001.111321
  28. Tejero-Sarinena, S., Barlow, J., Costabile, A., Gibson, G. R., and Rowland, I. (2012) In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe. 18, 530-538. https://doi.org/10.1016/j.anaerobe.2012.08.004
  29. Teraguchi, S., Uhara, M., Ogasa, K., and Mitsuoka, T. (1978) Enumeration of bifidobacteria in dairy products. Jpn. J. Bacteriol. 33, 753-761. https://doi.org/10.3412/jsb.33.753
  30. Toure, R., Kheadr, E., Lacroix, C., Moroni, O., and Fliss, I. (2003) Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J. Appl. Microbiol. 95, 1058-1069. https://doi.org/10.1046/j.1365-2672.2003.02085.x
  31. Wolvers, D., Antoine, J. M., Myllyluoma, E., Schrezenmeir, J., Szajewska, H., and Rijkers, G. T. (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: Prevention and management of infections by probiotics. J. Nutr. 140, 698S-712S. https://doi.org/10.3945/jn.109.113753
  32. Yin, N., Li, J., He, Y., Herradura, P., Pearson, A., Mesleh, M. F., Mascio, C. T., Howland, K., Steenbergen, J., Thorne, G. M., Citron, D., Van Praagh, A. D. G., Mortin, L. I., Keith, D., Silverman, J., and Metcalf, C. (2015) Structure-activity relationship studies of a series of semisynthetic lipopeptides leading to the discovery of surotomycin, a novel cyclic lipopeptide being developed for the treatment of Clostridium difficileassociated diarrhea. J. Med. Chem. 58, 5137-5142. https://doi.org/10.1021/acs.jmedchem.5b00366
  33. Yuan, J., Wang, B., Sun, Z., Bo, X., Yuan, X., He, X., Zhao, H., Du, X., Wang, F., Jiang, Z., Zhang, L., Jia, L., Wang, Y., Wei, K., Wang, J., Zhang, X., Sun, Y., Huang, L., and Zeng, M. (2008) Analysis of host-inducing proteome changes in Bifidobacterium longum NCC2705 grown in vivo. J. Proteome Res. 7, 375-385. https://doi.org/10.1021/pr0704940
  34. Yun, B., Oh, S., and Griffiths, M. W. (2014) Lactobacillus acidophilus modulates the virulence of Clostridium difficile. J. Dairy Sci. 97, 4745-4758. https://doi.org/10.3168/jds.2014-7921
  35. Yun, B., Oh, S., Song, M., Hong, Y. S., Park, S., Park, D. J., Griffiths, M. W., and Oh, S. (2015) Inhibitory effect of epigallocatechin gallate on the virulence of Clostridium difficile PCR ribotype 027. J. Food Sci. 80, M2925-M2931. https://doi.org/10.1111/1750-3841.13145

Cited by

  1. Protective Effects of Bifidobacterial Strains Against Toxigenic Clostridium difficile vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00888
  2. Efficient Phytase Secretion and Phytate Degradation by Recombinant Bifidobacterium longum JCM 1217 vol.10, pp.None, 2017, https://doi.org/10.3389/fmicb.2019.00796
  3. Clostridium difficile clade 3 (RT023) have a modified cell surface and contain a large transposable island with novel cargo vol.9, pp.1, 2017, https://doi.org/10.1038/s41598-019-51628-5
  4. Effect of Three Polysaccharides (Inulin, and Mucilage from Chia and Flax Seeds) on the Survival of Probiotic Bacteria Encapsulated by Spray Drying vol.10, pp.13, 2020, https://doi.org/10.3390/app10134623
  5. The mechanisms and safety of probiotics against toxigenic clostridium difficile vol.18, pp.10, 2017, https://doi.org/10.1080/14787210.2020.1778464
  6. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases vol.9, pp.None, 2017, https://doi.org/10.3389/fbioe.2021.770248
  7. Structure-Activity Relationship for the Picolinamide Antibacterials that Selectively Target Clostridioides difficile vol.12, pp.6, 2021, https://doi.org/10.1021/acsmedchemlett.1c00135
  8. Descriptive Study of Gut Microbiota in Infected and Colonized Subjects by Clostridiodes difficile vol.9, pp.8, 2017, https://doi.org/10.3390/microorganisms9081727
  9. The Cooperation of Bifidobacterium longum and Active Vitamin D3 on Innate Immunity in Salmonella Colitis Mice via Vitamin D Receptor vol.9, pp.9, 2017, https://doi.org/10.3390/microorganisms9091804