• Title/Summary/Keyword: cytoplasmic family

Search Result 55, Processing Time 0.024 seconds

Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli

  • Park, Jimin;Kim, Mi-Sun;Joo, Keehyung;Jhon, Gil-Ja;Berry, Edward A.;Lee, Jooyoung;Shin, Dong Hae
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.495-500
    • /
    • 2016
  • We have solved the crystal structure of a predicted fructose-specific enzyme $IIB^{fruc}$ from Escherichia coli ($EcEIIB^{fruc}$) involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system transferring carbohydrates across the cytoplasmic membrane. $EcEIIB^{fruc}$ belongs to a sequence family with more than 5,000 sequence homologues with 25-99% amino-acid sequence identity. It reveals a conventional Rossmann-like ${\alpha}-{\beta}-{\alpha}$ sandwich fold with a unique ${\beta}$-sheet topology. Its C-terminus is longer than its closest relatives and forms an additional ${\beta}$-strand whereas the shorter C-terminus is random coil in the relatives. Interestingly, its core structure is similar to that of enzyme $IIB^{cellobiose}$ from E. coli ($EcIIB^{cel}$) transferring a phosphate moiety. In the active site of the closest $EcEIIB^{fruc}$ homologues, a unique motif CXXGXAHT comprising a P-loop like architecture including a histidine residue is found. The conserved cysteine on this loop may be deprotonated to act as a nucleophile similar to that of $EcIIB^{cel}$. The conserved histidine residue is presumed to bind the negatively charged phosphate. Therefore, we propose that the catalytic mechanism of $EcEIIB^{fruc}$ is similar to that of $EcIIB^{cel}$ transferring phosphoryl moiety to a specific carbohydrate.

AlLTPs from Allium species represent a novel class of lipid transfer proteins that are localized in endomembrane compartments

  • Yi, Seung-In;Park, Mee-Yeon;Kim, Ju-Kon;Choi, Yang Do
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.213-223
    • /
    • 2009
  • Lipid transfer proteins (LTPs) are widely distributed in the plant kingdom, but their functions remain elusive. The proteins AlLTP2-4 were isolated from three related Allium plants: garlic (A. sativum L.), Welsh onion (A. fistulosum L.), and Nanking shallot (A. ascalonicum L.). These novel proteins comprise a new class of LTPs associated with the Ace-AMP1 from onion (A. cepa L.). The AlLTP genes encode proteins harboring 132 common amino acids and also share a high level of sequence identity. Protein characteristics and phylogenetic analysis suggest that LTPs could be classified into five distinct groups. The AlLTPs were clustered into the most distantly related plant LTP subfamily and appeared to be restricted to the Allium species. In particular, the number of amino acids existing between the fourth and fifth Cys residue was suggested as a conserved motif facilitating the categorization of all the LTP-related proteins in the family. Unlike other LTPs, AlLTPs harboring both the putative C-terminal propeptide and N-terminal signal peptide were predicted to be localized to cytoplasmic vacuoles. When a chimeric GFP protein fused with both N-terminal and C-terminal AlLTP2 signal peptides was expressed in rice cells, the fluorescence signal was detected in the endomembrane compartments, thereby confirming that AlLTPs are an unprecedented intracellular type of LTP. Collectively, our present data demonstrate that AlLTPs are a novel type of LTP associated with the Allium species.

Inhibitory Effects of the Ethanol Extract of Lavandula vera on Sebum Synthesis (라벤더 에탄올 추출물의 피지생성 억제효과)

  • Park, Si-Jun;Kim, Ho-Min;Han, Kyu-Soo;Seong, Geum-Su;Shin, Mee-Ran;Mun, Yeun-Ja;Woo, Won-Hong
    • The Journal of Traditional Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • Lavandula vera is indispensable member of the herb family, used for perfumes and potpourri. Androgens have profound effects on the physiology of the sebaceous gland. Sebum is secreted due to the effect of androgen, which starts to be secreted at puberty. Using the human sebocyte cell line SZ95. the author investigated the inhibitory effect of Lavandula vera on the lipid production. Light microscopic finding were examined numerous cytoplasmic lipid droplets SZ95 cells by Oil red staining and lipid droplets were increased markedly by testosterone. On the other hand, combined treatment with Lavandula vera and testosterone resulted in a lower lipid droplets than with testosterone alone in a dose-dependent manner. These findings indicate that Lavandula vera acts antagonistically to testosterone and inhibits the lipid synthesis of SZ95 cells at the cellular level.

  • PDF

Anastral Spindle 3/Rotatin Stabilizes Sol narae and Promotes Cell Survival in Drosophila melanogaster

  • Cho, Dong-Gyu;Lee, Sang-Soo;Cho, Kyung-Ok
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.13-25
    • /
    • 2021
  • Apoptosis and compensatory proliferation, two intertwined cellular processes essential for both development and adult homeostasis, are often initiated by the mis-regulation of centrosomal proteins, damaged DNA, and defects in mitosis. Fly Anastral spindle 3 (Ana3) is a member of the pericentriolar matrix proteins and known as a key component of centriolar cohesion and basal body formation. We report here that ana3m19 is a suppressor of lethality induced by the overexpression of Sol narae (Sona), a metalloprotease in a disintegrin and metalloprotease with thrombospondin motif (ADAMTS) family. ana3m19 has a nonsense mutation that truncates the highly conserved carboxyl terminal region containing multiple Armadillo repeats. Lethality induced by Sona overexpression was completely rescued by knockdown of Ana3, and the small and malformed wing and hinge phenotype induced by the knockdown of Ana3 was also normalized by Sona overexpression, establishing a mutually positive genetic interaction between ana3 and sona. p35 inhibited apoptosis and rescued the small wing and hinge phenotype induced by knockdown of ana3. Furthermore, overexpression of Ana3 increased the survival rate of irradiated flies and reduced the number of dying cells, demonstrating that Ana3 actively promotes cell survival. Knockdown of Ana3 decreased the levels of both intra- and extracellular Sona in wing discs, while overexpression of Ana3 in S2 cells dramatically increased the levels of both cytoplasmic and exosomal Sona due to the stabilization of Sona in the lysosomal degradation pathway. We propose that one of the main functions of Ana3 is to stabilize Sona for cell survival and proliferation.

Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways

  • Gao, Jingying;Xia, Lixia;Wei, Yuanyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.165-174
    • /
    • 2022
  • As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2023
  • The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.

Characterization of Bruton's Tyrosine Kinase Genetic Mutations in One Korean X-linked Agammaglobulinemia Family (반성 열성 범저감마글로불린혈증 1가계 3환자의 Bruton's Tyrosine Kinase 유전자 변이 및 임상 양상)

  • Jo, Eun-Kyeong;Song, Chang-Hwa;Park, Jeong-Kyu;Baek, Young-Jong;Rhu, Hye-Young;Lee, Jae-Ho;Hwang, Tai-Ju;Kook, Hoon
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.2
    • /
    • pp.183-191
    • /
    • 2002
  • Purpose : X-linked agammaglobulinemia(XLA) is an immunodeficiency caused by abnormalities in Bruton's tyrosine kinase(Btk), and is characterized by a deficiency of peripheral blood B cells. We studied the cytoplasmic expression of Btk protein and analyzed the Btk gene in peripheral blood mononuclear cells from two siblings and one cousin with XLA, as well as additional family members. Methods : Btk protein expression was analyzed by flow cytometry. Isolation of the coding sequence of the Btk gene was performed by amplification using the reverse transcription-polymerase chain reaction(RT-PCR) technique. Sequence alterations were screened by the single-stranded conformation polymorphism(SSCP) method and characterized by standard sequencing protocols. Results : Cytoplasmic expression of Btk protein in monocytes was not detected in three patients with XLA. In addition, Btk protein analysis clearly showed cellular mosaicism in monocytes from four obligate carriers, findings further supported by SSCP. A single base pair mutation(T to C) in Btk-exon three, which encodes the PH domain, was identified in four XLA patients. A diagnostic sequencing analysis was established to detect heterozygotic pattern in 4 carrier females. Furthermore, we found significant clinical heterogeneity in individuals with the same gene mutation. Conclusion : The implicating genetic alteration provided valuable clues to the pathogenesis of XLA in Korea and the flow cytometric analysis was suggested as a useful tool for rapid detection of XLA patients and carriers. The present study has identified a genetic mutation in the Btk coding region and demonstrated heterogeneity in clinical manifestations among patients with the same mutation. A flow cytometric analysis was found to be informative in establishing a deficiency of Btk protein in both patients and carriers and is recommended as a frontline procedure in the molecular diagnosis and work-up of XLA.

Characterization of Mutations in Bruton's Tyrosine Kinase(Btk) Gene from Unrelated 3 X-linked Agammaglobulinemia(XLA) Families in Korea (국내 X-관련성 범저감마글로불린혈증 세가족에 대한 Bruton's Tyrosine Kinase 단백질 발현 및 유전자 변이 분석)

  • Song, Chang-Hwa;Jo, Eun-Kyeong;Park, Jeong-Kyu;Kim, Jung-Soo;Hong, Soo-Jong;Lee, Jae-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.3
    • /
    • pp.302-310
    • /
    • 2002
  • Purpose : X-linked agammaglobulinemia(XLA) is an immunodeficiency caused by abnormalities in Bruton's tyrosine kinase(Btk), and is characterized by a deficiency of peripheral blood B cells. We studied cytoplasmic expression of Btk protein and analyzed the Btk gene in peripheral blood mononuclear cells(PBMC) from three XLA families in Korea. Methods : Heparinized venous blood samples were collected from four XLA patients and additional family members in three unrelated XLA families. Mononuclear cells were separated from their blood and the intracellular Btk protein was characterized by a flow cytometry. The mutation analysis was performed using direct sequencing. Results : Cytoplasmic expression of Btk protein in monocytes was not detected in the patients with XLA. We observed a novel deletion and two point mutations within introns(intron 1 and intron 18) resulting in alternative splicings. In XLA family 2, a 980 bp deletion(from intron 9+191 T to intron 10-215 C) including exon 10 was found in patient P2. He was the only sporadic case in this study, because his mother and brother showed a normal Btk expression by flow cytometry. Conclusion : These identified genetic alterations support the molecular heterogeneity of Btk gene in XLA disease. Additionally, by means of flow cytometric analysis, we diagnosed three hypogammaglobulinemia patients as XLA. Advancements in diagnostic methods has facilitated a prompt and definite diagnosis of this disease.

Apoptosis Induced by BARODON® in Human Gastric Cancer Cells (BARODON® 에 의한 Human Gastric Adenocarcinoma AGS 세포고사)

  • Jo Eun-Hye;Choi Soo-Il;Kim Soo-Rim;Cho Sung-Dae;Ahn Nam-Shic;Jung Ji-Won;Yang Se-Ran;Park Joon-Suk;Hwang Jae-Woong;Park Yong-Ho;Lee Yong-Soon;Kang Kyung-Sun
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • [ $BARODON^{(R)}$ ] is a multi-purpose, high functional alkali solution made by mixing and liquid-ionizing silicon, calcium, sodium, borax, organic carbon chemicals and silver. In this study, we have investigated the apoptotic potential and mechanistic insights of $BARODON^{(R)}$ in human gastric cancer cell line (AGS cells). In MTT assay, $BARODON^{(R)}$ reduced cell viability in AGS cells. Morphological features of apoptosis with marked cytoplasmic vacuolation and appearance of apoptotic peaks in flow cytometry were observed in AGS cells with$BARODON^{(R)}$ treatment. In addition, $BARODON^{(R)}$ induced apoptosis of stomach cancer cell is related to bax up-regulation, caspase 7 protease activation and subsequent cleavage of poly (ADP-ribose) polymerase (PARP). These results suggest that BARODON can induce the apoptosis of AGS cells through modulation of bcl-2 family and the activation of intrinsic caspase cascades, indicating that it is potentially useful as a anti-cancer agent.

Immunocytochemical Localization of Metallothionein in Gastric Adenocarcinoma (위암 조직내 Metallothionein의 면역 세포화학적 연구)

  • Yang, Seung-Ha;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • Metallothionein (MT) is a family of ubiquitous, low molecular weight ($6,000{\sim}7,000D$), cysteine-rich ($30{\sim}35%$) inducible protein with a high affinity to metal ions and has no aromatic amino acids and histidine. Some of the known functions of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Also, this protein has been reported to involve in tumor pathophysiology and therapy resistance. MT expression may affect a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. Many reports on the physiological and biochemical properties of MT have been published, but ultrastructural reports on the localization of MT in human gastric cancer tissues are extremely rare. The present study was undertaken to examine the ultrastructural features and the localization of MT within the gastric adenocarcinoma. Ultrastructures of gastric cancer cells were characterized by the high nuclear cytoplasmic ratio, the interdigitation between cells, the irregular nucleus containing much heterochromatin and the wide distribution of free ribosomes in the cytoplasm. Immunohistochemical reaction for MT was prominent in the gastric adenocarcinoma. And the immunogold labellings were more prominent within the nucleus than the cytoplasm. Particularly, immunogold particles were numerously seen at nulcleolus or nucleolar associated heterochromatin. These results suggest that MT expression by gastric cancer cells is associated with cell proliferative activity and is possibly synthesized in the cytoplasm, and then the protein is transported into the nucleus to participate in any transcriptional steps.