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Introduction 

Listeria monocytogenes is a pathogenic facultative, intracytosolic, gram-positive bacterium 
for humans and several animal species which is responsible for the infection-listeriosis 
[1]. Listeric infections are often associated with gastrointestinal (GI) listeriosis (non-in-
vasive) in immunocompetent persons or listeriosis (invasive) in immune-compromised 
individuals [2,3]. Invasive listeriosis is responsible for meningitis in immunocompromised 
people and miscarriage in pregnant women [4]. Patients with chronic renal failure and 
cirrhosis, as well as those on drugs to reduce gastric acidity, are at greater risk of listeriosis 
[5]. Moreover, urinary tract infections by L. monocytogenes were also recorded, in an in-
stance after detecting this bacterium in urine samples [6]. One of the prime reasons for 
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listeriosis outbreaks is inadequate hygiene standards and insuffi-
cient implementation of standard sanitation operating procedures 
in the food manufacturing industry [7]. Multidrug-resistant L. 
monocytogenes has been found in irrigation waters and agricultural 
soils, and can spread to agronomical fresh product risking food 
safety [8]. There is compelling evidence that contaminated food, 
mostly ready-to-eat meals, is the main route of transmission of this 
bacterium into humans. The ability of L. monocytogenes to traverse 
host barriers (such as the intestinal barrier, and the materno-fetal 
barrier), is responsible for causing listeriosis. L. monotocytogenes 
can also be detectable in the bloodstream during an infection [9]. 
After successfully evading the GI tract environment, L. monocyto-
genes can invade and persist in mammalian host cells due to pres-
ence of multiple virulence factors [10]. Because of the clinical sig-
nificance of listeriosis, several genomes of L. monocytogenes strains 
have already been sequenced to have a deeper understanding of 
the species' lifestyle and pathogenicity, as well as the possible im-
pact of strain variability on virulence. L. monocytogenes could be di-
vided into four evolutionary lineages and four serogroups based 
on polymerase chain reaction testing in the two genes of hlyA and 
iap [11,12]. The major portion of L. monocytogenes isolates are 
from lineage I, including serotypes 1/2b, 3b, and 4b. On the other 
hand, lineage II comprises serotypes 1/2a, 1/2c, 3a, and 3c. The 
bacteria L. monocytogenes EGD-e (serovar 1/2a) is responsible for 
various listeriosis outbreaks. The EGD-e strain has a circular chro-
mosome consisting of 2,944,528 bp with an estimated 39% of G + 
C content [13]. The EGD-e strain of L. monocytogenes genome has 
been predicted to contain a sum of 2,853 genes that code for pro-
teins. A large number of genes that regulate the pathogenicity, de-
velopment, and survival of EGD-e strain have already been charac-
terized by researchers and annotated in the published genome se-
quence [14-17]. Nonetheless, numerous loci with putative genes 
that codes for protein are designated as "Hypothetical proteins 
(HP)" because the relationship between those proteins and listeria 
life cycle are poorly understood. An HP is predicted to be encoded 
by a recognized open reading frame but has no experimental evi-
dence to support its putative function [18]. In most genomes, 
around 50% of the protein-coding genes are designated as HPs. 
Thereby, HPs are likely to have their own significance in an organ-
ism's overall proteomic platform. An appropriate annotation of the 
HPs found in a pathogen helps researcher not only to gain an im-
proved knowledge of the pathogen's virulent actions but also to 
discover new structures of proteins, metabolic pathways, and func-
tions [19]. HPs may likely to act an important role in organisms’ 
growth, survival, and disease progression. They can also serve as 
potential pharmacological targets and genetic markers for the de-

velopment of novel antimicrobial medicines and medications [20]. 
In recent times, bioinformatics has improved our knowledge of 
protein function-structure interactions. Bioinformatics analysis 
has the advantage of being less expensive and time-saving than 
conventional in vitro procedures. Functional annotation of HPs 
utilizing different structural and sequence-specific bioinformatics 
softwares can aid in the classification of these proteins into which 
several functional groups, providing more information about their 
structures, activities, and contribution in metabolism [21]. Be-
cause L. monocytogenes is prevalent in surroundings, constant focus 
by risk managers is much needed to control Listeria in food pro-
duction facilities. Therefore, to curtail the prevalence and to devel-
op effective control measures against listeriosis, a better under-
standing of the microorganism's characteristics, environmental in-
fluence, and host-virulent factors interactions are required [22]. 
Thus, the main objective of this study is to ascribe a potential bio-
logical function and predictive structure to the HP Imo088 (acces-
sion No. NP_464414.1) of L. monocytogenes EGD-e. The protein 
sequences were analyzed utilizing latest bioinformatics software 
and tools for homology search against functionally characterized 
proteins, determination of domain and physicochemical proper-
ties, prediction of subcellular localization, and determination of 
active site. We believe that this interpretation will strengthen our 
knowledge about the functional activities of the HP Imo088 found 
in listeria and provide a platform to discover potential pharmaco-
logical targets. 

Methods 

Sequence retrieval with FASTA format 
The FASTA sequence of the HP (NP_464414.1) were obtained 
from the NCBI (National Center for Biotechnology Information; 
https://www.ncbi.nlm.nih.gov/) [23] database. The protein se-
quence was then submitted on to numerous prediction servers for 
the in-silico annotation [24].  

Physicochemical properties analysis  
The ExPASy ProtParam (https://web.expasy.org/protparam/) 
tool was used to characterize HPs in terms of their physicochemi-
cal features which includes molecular weight, aliphatic index, ex-
tinction coefficients, amino acid composition, grand average of hy-
dropathy (GRAVY), isoelectric point (pI), and estimated half-life 
[25]. 

Prediction of protein subcellular localization 
The putative subcellular localization of the HP was determined by 
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CELLO v.2.5 (http://cello.life.nctu.edu.tw/) [26], an analysis 
based on a two-level support vector prediction system. Subcellular 
localization predicted by CELLO was further correlated with the 
result of PSORTb (https://www.psort.org/psortb/) [27], SOSUI 
(https://harrier.nagahama-i-bio.ac.jp/sosui/mobile/) [28], and 
PSLpred (https://webs.iiitd.edu.in/raghava/pslpred/submit.
html) [29]. SOSUI discriminates between soluble and transmem-
brane proteins by calculating the average hydrophobicity of pro-
tein. In contrast, PSORTb and PSLpred predict subcellular local-
ization of prokaryotic proteins on the basis of various features e.g., 
amino acid and dipeptide composition, composition of 33 physi-
cochemical properties, and evolutionary information of PSI-
BLAST. 

Identification of protein domain and motif 
For protein domain analysis, NCBI CD-Search (https://structure.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) [30], Pfam 34.0 
(http://pfam.xfam.org/) [31], InterProScan5 (http://www.ebi.
ac.uk/Tools/services/web/toolform.ebi?tool=iprscan5&se-
quence=uniprot:KPYM_HUMAN). To determine the protein 
sequence motif, MOTIF Search (https://www.genome.jp/tools/
motif/) tool was used [32]. Conserved domain (CD) search com-
pares a query sequence with the CD alignments which was found 
in the Conserved Domain Database (CDD). The functional analy-
sis of the protein was carried out by using the InterProscan tool. 
Pfam is a protein family database that uses hidden Markov models 
(HMMs) in order to generate annotations and multiple sequence 
alignments. 

Protein family and phylogenetic tree analysis 
The homologs of the HP (NP_464414.1), a protein-BLAST 
(BLASTp) (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Pro-
teins) [33] from NCBI (National Center for Biotechnology Infor-
mation) against the non-redundant database with default parame-
ters was performed. This approach is based on the local alignment 
of protein sequence to find similar proteins. CLC Sequence View-
er version 8.0 was used for multiple sequence alignment and to 
create phylogenetic tree for few selected sequences. 

Secondary structure prediction 
Two-dimensional structure of the NP_464414.1 protein was de-
termined using SOPMA (Self-optimized prediction method with 
alignment) (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.
pl?page=/NPSA/npsa_sopma.html) [34] and PSIPRED (Posi-
tion Specific Iterated – BLAST) (http://bioinf.cs.ucl.ac.uk/
psipred/) [35]. Result from SOPMA analysis was correlated with 

the result of PSIPRED. 

Homology modeling 
The Alpha Fold 2 Protein Structure Prediction Database (https://
alphafold.ebi.ac.uk/) [36] was used to determine the 3D structure 
of our putative HP and the performance of this determination was 
based on the pairwise comparison profile of HMMs. The template 
protein of the type II toxin-antitoxin system PemK/MazF family 
toxin protein (DB ID_AFDB: A0A4B9HQB9) was retrieved from 
the query result for homology-based modeling. UCSF Chimera 
1.16 was employed to visualize the 3D model structure. 

Quality assessment 
To assess the quality of the predicted 3D structure, various evalua-
tion tools were used. These include PROCHECK (https:// www.
ebi.ac.uk/thornton-srv/software/PROCHECK/), Verify3D 
(https://servicesn.mbi.ucla.edu/Verify3D/) [37], and QMEAN 
(https://swissmodel.expasy.org/qmean/) [38] programs of Ex-
PASy server of SWISS-MODEL Workspace. 

Active site analysis 
CASTp (Computed Atlas of Surface Topography of proteins; 
http://sts.bioe.uic.edu/castp/) server was applied to predict and 
locate the protein’s active site. CASTp not only predict the active 
pockets residing in protein surfaces, but also the key residues and 
the regions of protein that interact with ligands in the inner region 
of the three-dimensional structure. 

Energy minimization of the model structure 
The energy of the 3D model structure was minimized using 
YASARA (http://www.yasara.org/minimizationserver.htm) [39] 
force field minimizer. After refining through YASARA, a more sta-
ble and reliable 3D structure of the target protein was gained. 

Results 

Physicochemical properties 
ProtParam tool was used to determine some crucial physiochemi-
cal features. The protein was predicted to contain 115 amino acids, 
an isoelectric point (PI) of 6.73, and a molecular weight of 
12,759.85 Da. The calculated value of GRAVY of the protein was 
−0.057. The pr otein was classified as stable, because the instability 
index of the desired protein was computed to be 36.52. The most 
abundant amino acids were valine (11.3%), isoleucine (9.6%), 
leucine (8.7%), lysine (7.8%), asparagine (7.8%), alanine (7%), 
glutamate (6.1%), glycine (6.1%), threonine (6.1%), arginine 

3 / 11https://doi.org/10.5808/gi.22071

Genomics & Informatics 2023;21(1):e7

https://www.psort.org/psortb/
https://harrier.nagahama-i-bio.ac.jp/sosui/mobile/
https://webs.iiitd.edu.in/raghava/pslpred/submit.html
https://webs.iiitd.edu.in/raghava/pslpred/submit.html
https://structure.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://structure.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://pfam.xfam.org/
http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?
http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?
https://
www.genome.jp/tools/motif/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
https://
www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://servicesn.mbi.ucla.edu/Verify3D/
https://swissmodel.expasy.org/qmean/
www.yasara.org/minimizationserver.htm
https://doi.org/10.5808/gi.22071


(5.2%), glutamine (4.3%), tyrosine (1.7%), and histidine (1.7%). 
Surprisingly, tryptophan and cysteine were found to be completely 
absent in the protein sequence. The protein contains a total of 16 
negatively charged (Asp + Glu) and 16 positively charged (Arg + 
Lys) amino acids (Table 1). The report on atomic composition 
showed that the protein comprises of 1839 atoms having molecu-
lar formula of protein C568H943 N155O170S3. 

Subcellular localization 
A protein's function is significantly influenced by where it is locat-
ed within the cell. For this reason, understanding a protein's loca-
tion in the cellular setting is beneficial to discover proteins with 
undetermined function. Determination of subcellular localization 
of the target protein was done by CELLO and further confirmed 
by PSORTb, SOSUIGramN, and PSLpred server. It was found by 
all of these methods that the protein would be cytoplasmic (Table 
2). This knowledge might be helpful for interpreting the function-
al role as well as for designing a drug against the target protein. 

Domain and motif identification 
The specific hit explored by CD search tool predicted that the 
query protein belongs to PemK toxin superfamily with an E-value 
of 2.87e−43. This domain co vers 5 to 110 amino acid residues of 
our protein sequence (Table 3). The result of the CD search analy-
sis was found to be comparable with the outcome of InterProScan 
and Pfam. The Pfam tool predicted the PemK toxin superfamily 
domain at 4 to109 amino acid residues. The InterProScan server 
predicted PemK-like domain in the range of 1 to 112 amino acid 
residues of the HP. Similarly, the MOTIF server predicted the 
PemK domain at the position of 4 to 109 amino acid residues hav-
ing an E-value of 2.6e-33. PemK is a growth inhibitor that is found 
in Escherichia coli and it auto regulating synthesis by binding to the 
promoter region of Pem operon. A typical bacterial toxin-antitoxin 

system contains the toxin molecule of this family. A number of dif-
ferent toxins, such as MazF, Kid, PemK, ChpA, ChpB, and ChpAK 
are also members of this family [40].  

Protein family and phylogeny analysis 
The BLASTp search was carried out against the non-redundant 
database which showed sequence similarities (up to 96 %) with 
other known PemK/MazF family toxin proteins of type II tox-
in-antitoxin system from different Listeriaceae (Table 4). Multiple 
sequence alignments of few selected proteins retrieved from 
BLASTp results were done to observe the conserved and dissimi-
lar residues among the homologs (Fig. 1). A phylogenic tree was 
built using the same information (Fig. 2). The target protein, as 
well as two other Listeria monocytogenes proteins, appear to have a 
common ancestor with the WP_185340554.1 protein of Listeria 
seerigeli. The scale bar estimates sequence divergence, and amount 
of genetic change is represented by the line segment with the num-
ber (0.013). 

Secondary structure prediction 
To analyze the protein’s secondary structure, a server named SOP-
MA was used to estimate the proportions of extended strand 
(21.74%), alpha helix (33.91%), beta turn (3.48%), and random 
coil (40.87%). Similar outcomes were also found during PSIPRED 
analysis (Fig. 3). 

Three-dimensional structure determination and model 
quality assessment 
The template structure of the type II toxin-antitoxin system 
PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9H-
QB9) was used to determine the 3D structure of our target pro-

Table 1. The physicochemical properties of the NP_464414.1 protein 
estimated by ProtParam

Descriptions Value
No. of amino acids 115
Molecular weight (Da) 12,759.85
Theoretical PI 6.37
No. of positively charged residues 16
No. of negatively charged residues 16
No. of atoms 1839
Instability Index 36.52
Aliphatic Index 110.96
Grand average of hydropathicity –0.057

Table 2. The subcellular localization prediction of the query protein 
NP_464414.1

Server Final prediction
CELLO v.2.5 Cytoplasmic localization
PSORTb Cytoplasmic localization
SOUSIGramN Cytoplasmic localization
PSLpred Cytoplasmic protein

Table 3. Result of CDD of NP_464414.1

Name Acession Description Interval E-value
PemK toxin pfam02452 PemK-like, MazF-like toxin 

of type II toxin-antitoxin 
system

5–110 2.87e-43
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tein, which showed 99.1% identities with our desired protein in 
the Alpha Fold 2 Protein Structure Prediction Database. The tem-
plate protein is a toxin MazF protein from Listeria monocytogenes. 

The structure was visualized by UCSF Chimera 1.16 (Fig. 4). 
PROCHECK was used to evaluate the projected 3D structure of 
target protein through Ramachandran plot analysis. As reported 

Table 4. BLASTp result showing similarity between proteins

Accession No. Organism Protein name Score Protein identity (%) E-value
NP_464414.1 Listeria monocytogenes Hypothetical Protein
WP_010989608.1 Listeria monocytogenes Type II toxin-antitoxin system PemK/MazF family toxin 232 100 7.00E-77
WP_070005577.1 Listeria monocytogenes Type II toxin-antitoxin system PemK/MazF family toxin 230 98.26 4.00E-76
WP_185340554.1 Listeria seeligeri Type II toxin-antitoxin system PemK/MazF family toxin 229 97.39 2.00E-75
WP_046326403.1 Listeria seeligeri Type II toxin-antitoxin system PemK/MazF family toxin 228 97.39 4.00E-75
EAF6615127.1 Listeria monocytogenes Type II toxin-antitoxin system PemK/MazF family toxin 227 96.52 8.00E-75
WP_025279828.1 Listeria ivanovii Type II toxin-antitoxin system PemK/MazF family toxin 226 96.52 2.00E-74
WP_003761304.1 Listeria immobilis Type II toxin-antitoxin system PemK/MazF family toxin 226 97.37 2.00E-74
EFS00786.1 Listeria seeligeri FSL N1-067 Type II toxin-antitoxin system PemK/MazF family toxin 226 97.37 2.00E-74
EFR97581.1 Listeria ivanovii FSL F6-596 Type II toxin-antitoxin system PemK/MazF family toxin 224 96.49 1.00E-73

Fig. 1. Multiple Sequence Alignment among different type II toxin-antitoxin system proteins with the target protein at the top row (sources 
for the sequences: Row 2, 3 and 9, Listeria monocytogenes; Row 4 to 6, Listeria seeligeri; Row 7 to 8, Listeria ivanovii; Row 10, Listeria 
immobilis). The figure was generated by CLC Sequence Viewer version 8.
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Fig. 2. Phylogenetic tree with true distance from target protein (NP_464414.1). The tree was generated using CLC Sequence Viewer version 8. 
Here, the scale bar estimates sequence divergence, and amount of genetic change is represented by the line segment with the number (0.013).

Fig. 3. Predicted secondary structure of the target protein using PSI-PRED server. This graphical representation has four different sections. 
First section consists of bars with different heights. The length of the bar height is proportional to confidence score. In the second section, 
the pink color denotes the alpha helix, the yellow color denotes beta sheets or strands, and the gray color depicts coils; the coil connects a 
particular alpha helix with the particular beta sheets. The third section contains an alphabetic representation, which denotes the secondary 
structure of a protein; Here E, H, C are used for beta sheets, alpha helixes and coils, respectively. In the last section, the arrangement of 
amino acids is presented in alphabetic form.

by PROCHECK, 92.2% amino acid residues covered the most fa-
vored regions in “Ramachandran plot” that is regarded as a valid 
model quality (Table 5, Fig. 5A). By Verify 3D plot, we concluded 
that 93.04% of the residues had an averaged 3D-1D score ≥ 0.2. 
The overall quality factor of the predicted protein came out to be 

95.1923 through ERRAT program. The predicted model reliabili-
ty is reflected through the QMEAN4 score which compares the 
model structure with already determined experimental structure 
of similar size. The QMEAN4 global score of our target protein is 
0.40 which indicates as good (Fig. 5B). 
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Active site analysis 
By using the CASTp server, the active site of the developed 3D 
structure was assessed (Fig. 6). The most active site was discov-
ered in one of the largest pockets with 74.975 solvent-accessible 
(SA) surface area and a total volume of 24.651 amino acids, re-
spectively. Key active residues predicted from pocket are TYR10, 
ILE24, ILE47, THR48, ALA49, PHE68, ARG70, SER72, and ILE91. The 
main step when designing a medication or inhibitor is the identifi-
cation of active site of amino acids.  

Energy minimization result  
The energy of the protein’s three-dimensional structure was mini-
mized by YASARA force field minimizer. The energy was reduced 
to –51,862.6 kJ/mol from –65,533.5 kJ/mol after energy minimi-
zation. The initial value was –0.04 kJ/mol; however, after the min-
imization process, the end value was 0.57 which indicates the 
structure as stable one. 

Discussion 

Listeria is an intrinsic pathogen that is gram-positive, rod-shaped, 
non-spore producing and catalase positive. The Listeria genus con-

tains 17 species, six of which L. monocytogenes, L. ivanovii, L. seeli-
geri, L innocua, L. welshimeri, and L. grayi are most frequent [41]. 
Among these species, only L. monocytogenes is responsible for seri-
ous complications in both human and animals. L. monocytogenes is 
a prominent cause of foodborne disease worldwide, with a high 
hospitalization and fatality rate. Characterization of HPs 
NP_464414.1 of L. monocytogenes EGD-e can aid in understand-
ing bacterial metabolic regulations, formulating disease control 
strategies, and developing effective therapeutics. Various computa-
tional resources were employed in this study to characterize the 
HP NP_464414.1 of L. monocytogenes EGD-e from structural and 
functional aspects. The physiochemical properties’ analysis re-
vealed that the protein consists of 115 amino acid sequence, have a 
molecular weight of 12,759.85, the GRAVY score of –0.057, and a 
theoretical PI of 6.37 (Table 1). In our investigation, we used CEL-
LO for the prediction of subcellular location which revealed the 
query protein to be a cytoplasmic one. The analysis of the protein’s 
secondary structure reveals the prevalence of extended strand, 
beta turn, alpha helix, and random coil. Domain and motif study 
indicates that our target HP belongs to PemK toxin superfamily. A 
typical bacterial toxin-antitoxin system contains the toxin mole-
cule of this family (Table 3). We used other bioinformatics re-
sources to confirm that the prediction was highly accurate. 
BLASTp against the non-redundant database revealed up to 96 % 
sequence similarity with other type II toxin-antitoxin system 
PemK/MazF family toxin (L. monocytogenes) (Table 4). TASs are 
small genetic components composed of toxic protein and its anti-
toxin protein, with the latter counteracting the former's toxicity. 
Through in-silico analysis, two TASs (lmo0113-0114 and 
lmo0887-0888) are found in L. monocytogenes EGD-e using 
TADB2. Only a few studies on TASs of L. monocytogenes have 
been conducted so far and those were also limited to few strains 

Fig. 4. Predicted three-dimensional structure of the target protein 
(visualized by UCSF Chimera 1.16).

Table 5. Ramachandran plot statistics of the target protein

Statistics No. of AA 
residues (%)

Residues in the most favored regions [A,B,L] 94 (92.2)
Residues in additional allowed regions [a,b,I,p] 7 (6.9)
Residues in generously allowed regions [~a, ~b,~l,~p] 1 (1)
Residues in disallowed regions 0 (0)

Total (100)
No. of non-glycine and non-proline residues 102
No. of end residues (excl. Gly and Pro) 2
No. of glycine residues (shown in triangles) 7
No. of proline residues 4
Total No. of residues 115
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Fig. 5. Model Quality Assessment. (A) Ramachandran plot of the model structure validated by PROCHECK server. Here, 92.2% amino acid 
residues covered the most favored regions [A, B, L]. (B) Graphical representation of QMEAN result of the model structure. Here, Z score of 
the anticipated model was 0.40 (indicates good agreement between the model structure and experimental structure of similar size).

Fig. 6. Determination of active site using CASTp server. The largest 
active site was found in the areas with 74.975 and volume of 
24.651 amino acids.

and few TAS pairs [42,43]. The strain ATCC19117 was studied 
using in silico approach where few TASs pair were found 
(lmo0887-0888, lmo0113-0114, and Imo1301-1302) with subse-
quent 3D structure and possible inhibitory peptide analysis [44]. 
As an endoribonuclease, the toxin PemK selectively identifies and 
cut the tetrad sequence UAUU in a target mRNA without the 
need for ribosomes. It is suggested that the antitoxin Pemk acts as 
both a transcription factor and a toxin activity neutralizer, enabling 
bacterial survival [45]. It's interesting to note that, unlike the cell 
translation machinery, the target sequence (UAUU) of PemK is 
present in a sizable percentage of mRNA transcripts that encode 
virulence related protein [46,47]. The regulated proteins were im-
plicated in a variety of processes, including, cytoskeleton function, 
protein and lipid synthesis, heat shock and stress response, ATP 
synthesis, innate immunological defense, muscle construction, 
and others. The overexpression of the pemK gene severely inhibit-
ed bacterial growth in the case of other dangerous bacteria, such as 
Mycobacterium tuberculosis, Klebsiella pneumonia, and Bacillus an-
thracis [48]. PemK toxins coordinate the modulation of particular 
gene pools in the bacterial transcriptome, but their experimental 
characterization is challenging. The tertiary structure of the pro-
tein was developed from Alpha Fold 2 Protein Structure server 
and the quality of the model was assessed by evaluation software 

180

135

90

45

0

–45

–90

–135

1.5

1.0

0.5

0

–180 –135 –90 –45 0 45 90 135 180

500400300200100

Ps
i (

de
gr

ee
s)

N
or

m
al

iz
ed

 Q
M

EA
N

4 
sc

or
e

Comparison with non-redundant set of PDB structures

Protein size (residues)

Phi (degrees)

BBAA

https://doi.org/10.5808/gi.220718 / 11

Tasneem M et al. • Hypothetical protein from Listeria

https://doi.org/10.5808/gi.22071


like Verify 3D, PROCHECK, ERRAT, and QMEAN. 92.2 % ami-
no acid residues covered the most favored region in Ramachan-
dran plot, which depicts the model quality as valid (Fig. 5A). The 
result of QMEAN4 server (Fig. 5B) revealed that the Z score of 
the anticipated model was 0.40, which also denotes a good quality 
model. After YASARA energy minimization process, the 3D struc-
ture of target protein became more stable which turned to be 0.57. 
In CASTp analysis, one largest pocket was found as active sites 
with SA surface area of 74.975 and volume of 24.651 amino acids. 
The majority of viruses with toxin-antitoxin in their system pose a 
significant threat to individual’s health [44]. Although tremendous 
progress has been made in investigating the roles of toxin-antitox-
ins in recent years, many functional and structural aspects of tox-
in-antitoxins and their effectors remain elusive. Our aim of the 
study was to identify the structural and biological function of the 
HP NP_464416.1 of L. monocytogenes through an in silico ap-
proach. This annotation of the HP is fundamental to strengthen 
the basic knowledge on L. monocytogenes which may aid in under-
standing the mechanism of bacterial pathogenicity and virulence.  
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