Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0244

Anastral Spindle 3/Rotatin Stabilizes Sol narae and Promotes Cell Survival in Drosophila melanogaster  

Cho, Dong-Gyu (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Sang-Soo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Cho, Kyung-Ok (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
Apoptosis and compensatory proliferation, two intertwined cellular processes essential for both development and adult homeostasis, are often initiated by the mis-regulation of centrosomal proteins, damaged DNA, and defects in mitosis. Fly Anastral spindle 3 (Ana3) is a member of the pericentriolar matrix proteins and known as a key component of centriolar cohesion and basal body formation. We report here that ana3m19 is a suppressor of lethality induced by the overexpression of Sol narae (Sona), a metalloprotease in a disintegrin and metalloprotease with thrombospondin motif (ADAMTS) family. ana3m19 has a nonsense mutation that truncates the highly conserved carboxyl terminal region containing multiple Armadillo repeats. Lethality induced by Sona overexpression was completely rescued by knockdown of Ana3, and the small and malformed wing and hinge phenotype induced by the knockdown of Ana3 was also normalized by Sona overexpression, establishing a mutually positive genetic interaction between ana3 and sona. p35 inhibited apoptosis and rescued the small wing and hinge phenotype induced by knockdown of ana3. Furthermore, overexpression of Ana3 increased the survival rate of irradiated flies and reduced the number of dying cells, demonstrating that Ana3 actively promotes cell survival. Knockdown of Ana3 decreased the levels of both intra- and extracellular Sona in wing discs, while overexpression of Ana3 in S2 cells dramatically increased the levels of both cytoplasmic and exosomal Sona due to the stabilization of Sona in the lysosomal degradation pathway. We propose that one of the main functions of Ana3 is to stabilize Sona for cell survival and proliferation.
Keywords
Ana3; apoptosis; Arrow; cell death; exosome; radiation; Rotatin; Sona;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stouffs, K., Moortgat, S., Vanderhasselt, T., Vandervore, L., Dica, A., Mathot, M., Keymolen, K., Seneca, S., Gheldof, A., De Meirleir, L., et al. (2018). Biallelic mutations in RTTN are associated with microcephaly, short stature and a wide range of brain malformations. Eur. J. Med. Genet. 61, 733-737.   DOI
2 Strigini, M. and Cohen, S.M. (2000). Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293-300.   DOI
3 Torres, J.Z., Summers, M.K., Peterson, D., Brauer, M.J., Lee, J., Senese, S Gholkar, A.A., Lo, Y.C., Lei, X., Jung, K., et al. (2011). The STARD9/Kif16a kinesin associates with mitotic microtubules and regulates spindle pole assembly. Cell 147, 1309-1323.   DOI
4 Tsogtbaatar, O., Won, J.H., Kim, G.W., Han, J.H., Bae, Y.K., and Cho, K.O. (2019). An ADAMTS Sol narae is required for cell survival in Drosophila. Sci. Rep. 9, 1270.   DOI
5 Vakifahmetoglu, H., Olsson, M., and Zhivotovsky, B. (2008). Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153-1162.   DOI
6 Vandervore, L.V., Schot, R., Kasteleijn, E., Oegema, R., Stouffs, K., Gheldof, A., Grochowska, M.M., van der Sterre, M.L.T., van Unen, L.M.A., Wilke, M., et al. (2019). Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain 142, 867-884.   DOI
7 Won, J.H., Kim, G.W., Kim, J.Y., Cho, D.G., Kwon, B., Bae, Y.K., and Cho, K.O. (2019). ADAMTS Sol narae cleaves extracellular Wingless to generate a novel active form that regulates cell proliferation in Drosophila. Cell Death Dis. 10, 564.   DOI
8 Zeng, D.X., Xu, Y.J., Liu, X.S., Wang, R., and Xiang, M. (2011). Cigarette smoke extract induced rat pulmonary artery smooth muscle cells proliferation via PKCalpha-mediated cyclin D1 expression. J. Cell. Biochem. 112, 2082-2088.   DOI
9 Cho, K.O., Chern, J., Izaddoost, S., and Choi, K.W. (2000). Novel signaling from the peripodial membrane is essential for eye disc patterning in Drosophila. Cell 103, 331-342.   DOI
10 Chen, P., Nordstrom, W., Gish, B., and Abrams, J.M. (1996). grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773-1782.   DOI
11 Clevers, H. and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205.   DOI
12 Faisst, A.M., Alvarez-Bolado, G., Treichel, D., and Gruss, P. (2002). Rotatin is a novel gene required for axial rotation and left-right specification in mouse embryos. Mech. Dev. 113, 15-28.   DOI
13 Gross, J.C., Chaudhary, V., Bartscherer, K., and Boutros, M. (2012). Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036-1045.   DOI
14 Gulsen, T., Hadjicosti, I., Li, Y., Zhang, X., Whitley, P.R., and Chalmers, A.D. (2016). Truncated RASSF7 promotes centrosomal defects and cell death. Dev. Biol. 409, 502-517.   DOI
15 Kaplan, D.D., Meigs, T.E., Kelly, P., and Casey, P.J. (2004). Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J. Biol. Chem. 279, 10829-10832.   DOI
16 Han, J.H., Kim, Y., and Cho, K.O. (2020). Exosomal arrow (Arr)/lipoprotein receptor protein 6 (LRP6) in Drosophila melanogaster increases the extracellular level of Sol narae (Sona) in a Wnt-independent manner. Cell Death Dis. 11, 944.   DOI
17 Jaklevic, B.R. and Su, T.T. (2004). Relative contribution of DNA repair, cell cycle checkpoints, and cell death to survival after DNA damage in Drosophila larvae. Curr. Biol. 14, 23-32.   DOI
18 Kalimutho, M., Sinha, D., Jeffery, J., Nones, K., Srihari, S., Fernando, W.C., Duijf, P.H., Vennin, C., Raninga, P., Nanayakkara, D., et al. (2018). CEP55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Mol. Med. 10, e8566.   DOI
19 Karpen, G.H. and Schubiger, G. (1981). Extensive regulatory capabilities of a Drosophila imaginal disk blastema. Nature 294, 744-747.   DOI
20 Katanayeva, N., Kopein, D., Portmann, R., Hess, D., and Katanaev, V.L. (2010). Competing activities of heterotrimeric G proteins in Drosophila wing maturation. PLoS One 5, e12331.   DOI
21 Kelwick, R., Desanlis, I., Wheeler, G.N., and Edwards, D.R. (2015). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 16, 113.   DOI
22 Kheradmand Kia, S., Verbeek, E., Engelen, E., Schot, R., Poot, R.A., de Coo, I.F., Lequin, M.H., Poulton, C.J., Pourfarzad, F., Grosveld, F.G., et al. (2012). RTTN mutations link primary cilia function to organization of the human cerebral cortex. Am. J. Hum. Genet. 91, 533-540.   DOI
23 McLean, I.W. and Nakane, P.K. (1974). Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J. Histochem. Cytochem. 22, 1077-1083.   DOI
24 Kim, G.W., Won, J.H., Lee, O.K., Lee, S.S., Han, J.H., Tsogtbaatar, O., Nam, S., Kim, Y., and Cho, K.O. (2016). Sol narae (Sona) is a Drosophila ADAMTS involved in Wg signaling. Sci. Rep. 6, 31863.   DOI
25 Kim, Y. and Cho, K.O. (2020). POU domain motif3 (Pdm3) induces wingless (wg) transcription and is essential for development of larval neuromuscular junctions in Drosophila. Sci. Rep. 10, 517.   DOI
26 Logan, C.Y. and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781-810.   DOI
27 Nam, S. and Cho, K.O. (2020). Wingless and Archipelago, a fly E3 ubiquitin ligase and a homolog of human tumor suppressor FBW7, show an antagonistic relationship in wing development. BMC Dev. Biol. 20, 14.   DOI
28 Nelsen, C.J., Kuriyama, R., Hirsch, B., Negron, V.C., Lingle, W.L., Goggin, M.M., Stanley, M.W., and Albrecht, J.H. (2005). Short term cyclin D1 overexpression induces centrosome amplification, mitotic spindle abnormalities, and aneuploidy. J. Biol. Chem. 280, 768-776.   DOI
29 Nguyen, D., Fayol, O., Buisine, N., Lecorre, P., and Uguen, P. (2016). Functional interaction between HEXIM and Hedgehog signaling during Drosophila wing development. PLoS One 11, e0155438.   DOI
30 Raslan, A.A. and Yoon, J.K. (2020). WNT signaling in lung repair and regeneration. Mol. Cells 43, 774-783.   DOI
31 Repnik, U., Cesen, M.H., and Turk, B. (2013). The endolysosomal system in cell death and survival. Cold Spring Harb. Perspect. Biol. 5, a008755.   DOI
32 Stevens, N.R., Dobbelaere, J., Wainman, A., Gergely, F., and Raff, J.W. (2009). Ana3 is a conserved protein required for the structural integrity of centrioles and basal bodies. J. Cell Biol. 187, 355-363.   DOI
33 Song, D.H., Dominguez, I., Mizuno, J., Kaut, M., Mohr, S.C., and Seldin, D.C. (2003). CK2 phosphorylation of the armadillo repeat region of betacatenin potentiates Wnt signaling. J. Biol. Chem. 278, 24018-24025.   DOI