• 제목/요약/키워드: cylinder test

검색결과 908건 처리시간 0.028초

전투장비 엔진의 캐비테이션 영향에 따른 실린더 라이너의 내구성 강화 방안에 관한 연구 (A Study on Improving the Enhanced Durability of Cylinder Liner according to Cavitation Influence of Combat Equipment Engine)

  • 김대언;이기중
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.1-8
    • /
    • 2021
  • Cylinder liners used in diesel engines of combat equipment are prone to cavitation due to wet cooling. The damage caused by erosion and corrosion due to cavitation has a fatal effect on the performance and lifespan of a diesel engine. Therefore, a study was conducted to improve the durability of cylinder liners. Two surface treatment techniques were proposed: nitriding and chrome plating. It was observed that the amount of erosion on the surface of nitride-treated cylinder liners was high because the surface-treated part eroded due to its weak impact resistance against the bubble explosion generated by cavitation. In contrast, the chrome-plated cylinder liner had a lower amount of erosion among the specimens subjected to the accelerated test. These results verified that the resistance of chrome-plated liners against cavitation is high. Therefore, it can withstand the impact of bubble explosion. If the chrome plating thickness is set with reference to the KS standard, an exceptional durability of abrasion, wear resistance, and corrosion resistance can be obtained. If the thickness is set between 120~250㎛, it is expected that the durability of the cylinder liner can be improved. Although a recovery method for corroded cylinder liners is suggested, the proposed method has an inherent risk of crack generation. Therefore, further research is required to solve this problem.

EFFECT OF INTAKE PORT GEOMETRY ON THE IN-CYLINDER FLOW CHARACTERISTICS IN A HIGH SPEED D.I. DIESEL ENGINE

  • LEE K. H.;RYU I. D.;LEE C. S.;REITZ R. D.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, the HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a HSDI diesel engine with a 4-valve type cylinder head. The four kinds of cylinder head were manufactured to elucidate the effect of intake port geometry on the in-cylinder flow characteristics. The steady flow characteristics such as coefficient of flow rate $(C_{f})$, swirl ratio (Rs), and mass flow rate (m,) were measured by the steady flow test rig and the unsteady flow velocity within a cylinder was measured by PIV. In addition, the in-cylinder flow patterns were visualized by the visualization experiment and these results were compared with simulation results calculated by the commercial CFD code. The steady flow test results indicated that the mass flow rate of the cylinder head with a short distance between the two intake ports is $13\%$ more than that of the other head. However, the non-dimensional swirl ratio is decreased by approximately $15\%$. As a result of in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the position of swirl center was changed with crank angle. As the piston moves to near the TDC, the swirl center corresponded to the cylinder center and the velocity distribution became uniform. In addition, the results of the calculation are in good agreement with the experimental results.

가변 흡기시스템에 의해 유도되는 흡입공기의 유동특성 평가를 위한 새로운 3차원 회전유동 지수에 관한 연구 (A Study on the New 3-D Angular Flow Index for Evaluation of In-Cylinder Bulk Flow Characteristics of the Air Induced by Variable Induction System)

  • 윤정의;남현식;김명환;민선기;심대곤;박병완
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.99-105
    • /
    • 2007
  • It is very important to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system. In-cylinder flow induced by variable induction system is very complex, so we can not describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$), for in-cylinder bulk flow characteristics. And also, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

피스톤 링 팩 및 실린더 보아 마모와 오일소모를 고려한 엔진 내구수명 연구 (A Study on Engine Durability Considering Oil Consumption and Wear of Piston-Ring Pack and Cylinder Bore)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.155-163
    • /
    • 2006
  • Ring, groove and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face, groove geometry and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blowby and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings, grooves and cylinder bore are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below.

크로스 실린더법과 적·녹검사를 이용한 정밀구면 굴절력에 관한 고찰 (A Study for Exact Spherical Diopter by Cross Cylinder Lens and Red·Green Card Method)

  • 윤경한
    • 한국안광학회지
    • /
    • 제4권2호
    • /
    • pp.39-43
    • /
    • 1999
  • 14세에서 19세까지의 중 고등학생 1750안(875명)을 대상으로 cross cylinder lens와 적 녹 검사를 이용하여 교정후 조절력검사를 실시하여 다음과 같은 결과를 얻었다. Cross cylinder lens법을 사용하여 교정후 조절력검사를 측정한 결과 0 Dptr에서는 33%의 오차범위가 나타났고 -0.25 Dptr에서는 58%로 측정되었다. -0.75 Dptr에서는 1%의 오차 범위가 측정되었고 -1.00 Dptr에서는 오차가 측정되지 않았다. Cross cylinder lends법을 이용한 정밀구면굴절력의 오차범위는 0 Dptr에서 -0.25 Dptr까지 1%에 달하는 정밀측정 오차가 발생되었다. 적 녹검사를 이용한 교정후 조절력검사는 0 Dptr에서 -.025 Dptr에서 75%의 비율이 측정되었고 -0.50 Dptr에서는 20%가 측정되었다. 이 측정결과 Cross cylinder lens를 이용한 측정이 적 녹검사측정보다 더 세밀한 측정결과를 나타내었다.

  • PDF

Development of sit-to-stand assistive chair using a pneumatic cylinder: a feasibility test

  • Hong, SoungKyun;Lee, GyuChang
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권3호
    • /
    • pp.197-200
    • /
    • 2020
  • Objective: The purpose of this study was to develop and investigate the feasibility of a sit-to-stand assistive chair using a pneumatic cylinder. Design: Cross-sectional study. Methods: The sit-to-stand assistive chair was developed to assist the sit-to-stand movement by rising up of the chair by a pneumatic cylinder. After the user is seated on the chair, if the pneumatic cylinder pulls the seat plate when standing up, the spring of the pneumatic cylinder, which has been stretched, assists in rising the rear end of the seat plate so that the user can stand conveniently and comfortably. A feasibility test was performed in 10 heathy adults. The electromyographic muscle activation of the trunk and lower extremity muscles was analyzed, which included the erector spinae, rectus abdominis, quadriceps, tibialis anterior, gastrocnemius when standing up from sitting using the developed chair and standing up without using the developed chair. Results: As a result, the sit-to-stand assistive chair using a pneumatic cylinder was developed. In the feasibility test, the use of the developed chair had a decrease in rectus abdominis, quadriceps, tibialis anterior activation compared to those who did not use the device in the healthy adults. Conclusions: The sit-to-stand assistive chair using a pneumatic cylinder may be helpful to reduce the activation of the rectus abdominis, quadriceps, tibialis anterior muscles when performing a sit-to-stand movement. Through the results, the efficacy of the sit-to-stand assistive chair can be confirmed. In the future, further studies are warranted to investigate for the safety and efficacy of its use in the elderly population or those who are disabled.

LPG용기의 강도 안전성에 관한 유한요소해석 (FEM Analysis on the Strength Safety of a LPG Cylinder)

  • 김청균;정남인
    • 한국가스학회지
    • /
    • 제11권2호통권35호
    • /
    • pp.55-59
    • /
    • 2007
  • 본 논문은 평판강재를 소성적으로 가공하고, 이것을 용접으로 연결하여 제작한 LPG 용기에 대한 강도 안전성을 고찰하고자 한다. 용기의 강도 안전성은 유한요소해석법을 사용하여 LPG 용기 구조물에서 발생되는 응력분포를 해석함으로써 안전성에 대한 결과를 얻을 수 있다. FEM 해석결과에 의하면, 내압시험을 위한 가스압력 $31kg/cm^2$은 LPG 용기의 상부경판의 프레스 가공 부근에서 국부적인 집중응력이 발생하고, 여기서 발생된 최대응력은 용기 소재의 항복강도를 넘어서는 것으로 나타났다. 따라서 현재의 내압시험 검사방법은 압력용기의 피로손상을 증가시키고 수명을 단축하는 원인으로 작용할 수 있다는 결과를 보여주기 때문에 재검토되어야 하고, 빠른 시일에 개정되어야 할 것이다. 반면에 충전압력 $9kg/cm^2$와 기밀시험 압력 $18.6kg/cm^2$에 의한 용기의 충전과 검사기준에 대한 해석은 LPG 강재용기의 안전성이 비교적 높다는 결과를 제시하고 있다.

  • PDF

흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (II) - 정상유동실험결과를 중심으로 - (Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (II) - Based on the Steady Flow Rig Test Results -)

  • 윤정의;남현식;김명환;민선기;박병완;김기성
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1066-1073
    • /
    • 2006
  • Recently, because the variable induction systems are adopted to intake system, in-cylinder flow induced by induction system is very complex. Therefore it is very difficult to describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, in order to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$) Finally, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구 (In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine)

  • 김진수;전문수;윤정의
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

다단 왕복동 공기압축기의 평형추 설계 (Counter Weight Design of Multi-stage Reciprocating Air Compressors)

  • 김영철;김병옥;신현익
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.656-661
    • /
    • 2003
  • Modem reciprocating air compressors have tendency to a multi-stage W-type or V-type cylinder arrangement for the purpose of high outlet pressure, compactness and low vibration and noise. A valid counter weight calculation method using the complex expression is proposed for reducing the inertia forces of the compressor. Counter weight removes only 1st forward whirl component. Counter weight formulations are applied to the six various compressor structures which are (a) 1 cylinder single-throw crank shaft, (b) 2 cylinder single-throw crank shaft (c) 2 cylinder double-throw clank shaft, (d) 3 cylinder single-throw crank shaft, (e) 4 cylinder single-throw crank shaft and (f) 4 cylinder double-throw crank shaft. The improvement of performance is verified through available vibration test.

  • PDF