• 제목/요약/키워드: cycling performance

검색결과 342건 처리시간 0.03초

Electrochemical Performance of M2GeO4 (M = Co, Fe and Ni) as Anode Materials with High Capacity for Lithium-Ion Batteries

  • Yuvaraj, Subramanian;Park, Myung-Soo;Kumar, Veerasubramani Ganesh;Lee, Yun Sung;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.323-330
    • /
    • 2017
  • $M_2GeO_4$ (M = Co, Fe and Ni) was synthesized as an anode material for lithium-ion batteries and its electrochemical characteristics were investigated. The $Fe_2GeO_4$ electrode exhibited an initial discharge capacity of $1127.8mAh\;g^{-1}$ and better capacity retention than $Co_2GeO_4$ and $Ni_2GeO_4$. A diffusion coefficient of lithium ion in the $Fe_2GeO_4$ electrode was measured to be $12.7{\times}10^{-8}cm^2s^{-1}$, which was higher than those of the other two electrodes. The electrochemical performance of the $Fe_2GeO_4$ electrode was improved by coating carbon onto the surface of $Fe_2GeO_4$ particles. The carbon-coated $Fe_2GeO_4$ electrode delivered a high initial discharge capacity of $1144.9mAh\;g^{-1}$ with good capacity retention. The enhanced cycling performance was mainly attributed to the carbon-coated layer that accommodates the volume change of the active materials and improves the electronic conductivity. Our results demonstrate that the carbon-coated $Fe_2GeO_4$ can be a promising anode material for achieving high energy density lithium-ion batteries.

고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구 (Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries)

  • 차은희;김영운;임수아;임재욱
    • 전기화학회지
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2015
  • 삼성분 칼코게나이드 화합물인 황화 주석 저마늄 ($Sn_xGe_{1-x}S$) 합금 나노입자를 메틸 주석 $(Sn(CH_3)_4$, tetramethyl tin, TMT) 메틸 저마늄 $(Ge(CH_3)_4$, tetramethyl germanium, TMG), 황화수소 ($H_2S$, hydrogen sulfide) 혼합 가스의 레이저 광분해 반응법으로 합성할 수 있으며, 이때 반응기 안의 가스 혼합비율에 따라 나노입자의 주석과 저마늄의 조성비를 조절할 수 있었다. 조성비를 가변시킨 나노입자는 모두 결정성을 갖게 만들 수 있었으며, 리튬 이온 전지의 음극소재로서 우수한 특성을 보여주었다. 조성비에 따라 특성을 조사결과, 황화저마늄은 70 사이클 후 최대 1200 mAh/g의 가장 높은 방전용량을 갖는 것과, 주석 성분 함량이 클수록 높은 충방전률에서 용량 유지가 더 잘 됨을 확인하였다. 이와 같은 우수한 효율의 황화물 합금 나노입자의 새로운 대량 합성법은 고성능 에너지 변환 소재 실용화에 기여할 것으로 예상된다.

인간공학적 방법을 이용한 사이클 선수의 경기력 평가 (우수선수의 경기력 벤치마킹을 중심으로...) (Cyclist's Performance Evaluation Using Ergonomic Method (Focus to Benchmarking Elite Cyclist's Performance))

  • 하종규;장영관;기재석
    • 대한안전경영과학회지
    • /
    • 제12권1호
    • /
    • pp.51-57
    • /
    • 2010
  • Cycling that transform human energy into mechanical energy is one of the man-machine systems out of sports fields. Benchmarking means "improving ourselves by learning from others', therefore benchmarking toward dominant cyclist is necessary on field. The goals of this study were to provide important factors on multi-disciplines (kinematics, physiology, power, psychology) for a tailored-training program that is suitable to individual characteristics. Two cyclists participated in this study and gave consent to the experimental procedure. One was dominant cyclist (years: 21 yrs, height: 177 cm, mass: 70 kg), and the other was non-dominant cyclist (years: 21, height: 176, mass: 70). Kinematic data were recorded using six infrared cameras (240Hz) and QTM (software). Physiological data (VO2max, AT) were acquired according to graded exercising test with cycle ergometer and power with Wingate test used by Bar-Or et. al (1977) and to evaluate muscle function with Cybex. Psychological data were collected with competitive state anxiety inventory (CSAI-2) that was devised by Martens et. al (1990) and athletes' self-management questionnaire (ASMQ) of Huh (2003). It appears that the dominant's CV of ankle joint angle was higher than non-dominant's CV and dominant's pedaling pattern was consistent in biomechanics domain, which the dominant's values for all factors ware higher than non-dominant's values in physical, and physiological domain, and their values between cognitive anxiety and somatic anxiety were contrary to each other in psychology. Further research on multi-disciplines may lead to the development of tailored-optimal training programs applicable with key factors to enhance athletic performance by means of research including athlete, coach and parents.

The Application of Non-phosphorous AEC Program in Cooling Water Systems of Petrochemical Industry

  • Li, Dagang;Hong, Mike;He, Gaorong
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.16-21
    • /
    • 2008
  • A non-phosphorous program employing an alkyl epoxy carboxylate (AEC) has been successfully applied to petrochemical and other large industrial open recirculating cooling water systems. AEC is a patented non-phosphorous calcium carbonate scale inhibitor that has demonstrated better scale inhibition abilities than traditional organic phosphonates. In addition to its antiscalant properties, AEC inhibits carbon steel corrosion when used at high dosages. AEC can be combined with zinc to form a non-phosphorous program with very low levels of phosphate to provide an environmentally acceptable program. In actual applications, the total phosphate developed in the cooling system from cycling the makeup is below 1 ppm as $PO_4$. This level has complied with the highest standards of wastewater discharge limitations. The performance of two AEC/Zinc applications is reviewed. In both cases excellent corrosion and scale control were achieved with AEC/Zinc programs. One case history details the performance with a low hardness water (100 ppm calcium, as $CaCO_3$) operating at 8-10 cycles of concentration. The corrosive nature of the water and the long retention time of the system stressed both the corrosion and scale control capabilities of the program. The second case history demonstrates the performance of the program with a moderate hardness water (400-600 ppm calcium, as $CaCO_3$), but under harsh conditions of high temperature and low flow. The AEC/zinc combination has been found to be highly effective in controlling the corrosion of ferrous metals. AEC can provide good corrosion inhibition at high concentrations, while zinc is known to be an excellent cathodic inhibitor. The combination of the two inhibitors not only provides a synergistic blend that is effective over a wide range of operating conditions, but also is environmentally friendly.

Relationships between Calving Season and the Incidence of Postpartum Disorders, Milk Yield, and Reproductive Performance in Dairy Cows

  • Jeong, Jae-Kwan;Kang, Hyun-Gu;Kim, Ill-Hwa
    • 한국임상수의학회지
    • /
    • 제35권6호
    • /
    • pp.251-257
    • /
    • 2018
  • We determined the relationships between calving season and the incidence of postpartum disorders, milk yield, and reproductive performance in dairy cows. Data regarding cow parity, postpartum disorders, milk yield, and reproduction were collected from 1,478 lactations. The incidence of retained placenta was higher in spring- and summer-calving cows than in autumn- and winter-calving cows (P < 0.05). The incidence of septicemic metritis was highest in spring- and summer-calving cows, and was higher in autumn-calving cows than in winter-calving cows (P < 0.05). The incidence of metabolic disorders was higher in summer-calving cows than in autumn- and winter-calving cows (P < 0.01). The mean milk yield 1 and 2 months after calving was higher in spring-calving cows than in summer-calving cows (P < 0.05). The percentage of cows that had resumed cycling, defined by detection of a corpus luteum using ultrasonography 4 weeks after calving, was highest in autumn-calving cows, and was higher in summer- and winter-calving cows than in spring-calving cows (P < 0.05). The hazard of first insemination by 150 days after calving was higher in summer- and autumn-calving cows (hazard ratio [HR] = 1.19; P < 0.05) than in spring-calving cows. The hazard of pregnancy by 210 days after calving was also higher in summer-calving (HR = 1.24; P < 0.05) and autumn-calving (HR = 1.59; P < 0.0001) cows than in spring-calving cows. The probability of conception at the first insemination was higher (P < 0.0001) in autumn-calving (odds ratio [OR] = 1.96) and winter-calving (OR = 2.04) cows than in spring-calving cows. In conclusion, spring calving is associated with the worst, and autumn calving with the best, postpartum health and reproductive performance, whereas milk yield is higher in spring-calving cows than in summer-calving cows. Therefore, an effective strategy to support postpartum health and fertility should be instituted for spring-calving dairy cows kept in the Korean climate.

ZnO@Ni-Co-S Core-Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors

  • Sui, Yanwei;Zhang, Man;Hu, Haihua;Zhang, Yuanming;Qi, Jiqiu;Wei, Fuxiang;Meng, Qingkun;He, Yezeng;Ren, Yaojian;Sun, Zhi
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850148.1-1850148.9
    • /
    • 2018
  • The interconnected three-dimensional Ni-Co-S nanosheets were successfully deposited on ZnO nanorods by a one-step potentiostatic electrodeposition. The Ni-Co-S nanosheets provide a large electrode/electrolyte interfacial area which has adequate electroactive sites for redox reactions. Electrochemical characterization of the ZnO@Ni-Co-S core-shell nanorods presents high specifc capacitance (1302.5 F/g and 1085 F/g at a current density of 1 A/g and 20 A/g), excellent rate capabilities (83.3% retention at 20 A/g) and great cycling stability (65% retention after 5000 cycles at a current density of 30 A/g). The outstanding electrochemical performance of the as-prepared electrode material also can be ascribed to these reasons that the special structure improved electrical conductivity and allowed the fast diffusion of electrolyte ions.

Analysis of Electrochemical Performance of Reduced Graphene Oxide based Symmetric Supercapacitor with different Aqueous Electrolytes

  • Ravi, Sneha;Kosta, Shivangi;Rana, Kuldeep
    • 전기화학회지
    • /
    • 제25권1호
    • /
    • pp.22-31
    • /
    • 2022
  • Carbon nanomaterials are considered to be the materials of choice for the fabrication of electrochemical energy storage devices due to their stability, cost-effectiveness, well-established processing techniques, and superior performance compared to other active materials. In the present work, reduced graphene oxide (rGO) has been synthesized and used for the fabrication of a symmetric supercapacitor. The electrochemical performance of the fabricated supercapacitors with three different aqueous electrolytes namely 0.5 M H2SO4, 0.5 M H3PO4, and 1.0M Na2SO4 have been compared and analyzed. Among the three electrolytes, the highest areal specific capacitance of 14 mF/cm2 was calculated at a scan rate of 5 mV/s observed with 0.5M H3PO4 electrolyte. The results were also confirmed from the charge/discharge results where the supercapacitor with 0.5M H3PO4 electrolyte delivered a specific capacitance of 11 mF/cm2 at a current density of 0.16 mA/cm2. In order to assess the stability of the supercapacitor with different electrolytes, the cells were subjected to continuous charge/discharge cycling and it was observed that acidic electrolytes showed excellent cyclic stability with no appreciable drop in specific capacitance as compared to the neutral electrolyte.

The Role of Vanadium Complexes with Glyme Ligands in Suppressing Vanadium Crossover for Vanadium Redox Flow Batteries

  • Jungho Lee;Jingyu Park;Kwang-Ho Ha;Hyeonseok Moon;Eun Ji Joo;Kyu Tae Lee
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.152-161
    • /
    • 2023
  • Vanadium redox flow batteries (VRFBs) have been considered one of promising power sources for large scale energy storage systems (ESS) because of their excellent cycle performance and good safety. However, VRFBs still have a few challenging issues, such as poor Coulombic efficiency due to vanadium crossover between catholyte and anolyte, although recent efforts have shown promise in electrochemical performance. Herein, the vanadium complexes with various glyme ligands have been examined as active materials to suppress vanadium crossover between catholyte and anolyte, thus improving the Coulombic efficiency of VRFBs. The conventional Nafion membrane has a channel size of ca. 10 Å, whereas vanadium cation species are small compared to the Nafion membrane channel. For this reason, vanadium cations can permeate through the Nafion membrane, resulting in significant vanadium crossover during cycling, although the Nafion membrane is a kind of ion-selective membrane. In this regard, various glyme additives, such as 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), and tetraethylene glycol dimethyl ether (tetraglyme) have been examined as complexing agents for vanadium cations to increase the size of vanadium-ligand complexes in electrolytes. Since the size of vanadium-glyme complexes is proportional to the chain length of glymes, the vanadium permeability of the Nafion membrane decreases with increasing the chain length of glymes. As a result, the vanadium complexes with tetraglyme shows the excellent electrochemical performance of VRFBs, such as stable capacity retention (90.4% after 100 cycles) and high Coulombic efficiency (98.2% over 100 cycles).

리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성 (Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries)

  • 권익현;송명엽;방의용;한영수;김기태;이재영
    • 전기화학회지
    • /
    • 제5권1호
    • /
    • pp.30-38
    • /
    • 2002
  • 탄화수소가스를 고온$(1000^{\circ}C)$에서 열분해 하여 고상화하는 기상 열분해법을 사용하여 저결정질 탄소재를 제조하고 같은 방법으로 붕소를 첨가한 저결정질 탄소재$C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$를 제조하여, 리튬 이온 이차전지의 부극으로서의 전기화학적 특성을 조사하였다. 시료 대 PVDF를 95:5의 무게비로 첨가한 경우, 붕소를 첨가하지 않은 저 결정질 탄소재(x=0.00)는 초기 방전용량 374mAh/g을 나타내었으며, 제 2싸이클부터는 싸이클 성능이 비교적 우수하여 제 10싸이클에서 258mAh/g의 방전용량을 나타내었다. 시료 대 PVDF를 95:5의 무게비로 첨가한 경우, $C_{1-x}B_x(x=0.00,\;0.05,\;0.10\;0.20)$ 시료들 중에서 x=0.05 조성의 시료는 가장 큰 초기 방전용량 860mAh/g을 나타내었으며, 10번째 싸이클에서 181mAh/g의 방전용량을 나타내었다. 제 2싸이클부터 싸이클 성능은 모두가 비슷하게 나타났다 초기방전 용량(PVDF $10wt.\%$ 사용시, 853mAh/g), 싸이클 성능, 방전용량(PVDF $10wt.\%$사용시 10번째 싸이클에서 400mAh/g)면에서 $C_{0.90}B_{0.10}$ 시료가 리튬이온 이차전지의 부극으로서의 가장 우수한 전기화학적 특성을 나타내었다. 합성한 탄소에 NMP를 용매로 한 액상 혼합 바인더(PVDF)를 90:10의 무게비로 첨가한 경우가 95:5의 무게비로 첨가한 경우보다 대체로 모든 조성에서 충$\cdot$방전용량이 크게 나타났다. 붕소가 첨가되어 덜 disordered된 구조가 됨으로써 1.25V보다 낮은 전압 부분에서 평탄구역이 증가하는 것으로 판단된다. 붕소가 첨가된 경우 충$\cdot$방전용량이 제 2싸이클에서부터 급격히 감소하였는데, 이는 첨가된 붕소가 제 1싸이클에서 삽입되는 Li과 일부는 강하게 결합하여 추출이 안되고 일부만이 다시 가역적으로 추출$\cdot$삽입되기 때문으로 생각된다. 붕소 첨가에 의한 충$\cdot$방전용량의 증가는, 붕소가 electron acceptor로 작용하여 삽입된 Li와 붕소-탄소 host 사이의 결합 강도를 증가시킴으로써 붕소치환 된 탄소에서 Li의 전위를 상승시키기 때문에 일어난다고 사려된다.

콘크리트의 동결융해 내구성에 공기량, 제설제, 노출조건이 미치는 영향에 관한 연구 (Effect of Air Contents, Deicing Salts, and Exposure Conditions on the Freeze-Thaw Durability of the Concrete)

  • 이병덕
    • 한국도로학회논문집
    • /
    • 제12권2호
    • /
    • pp.107-113
    • /
    • 2010
  • 콘크리트의 박리(scaling)는 수분의 존재하에 동결융해 싸이클에 따른 콘크리트의 점진적인 표면열화이다. 특히, 이것은 제설제에 염화물의 존재가 콘크리트 표면박리(스켈링)와 더불어 심한 경우, 굵은골재의 노출 및 탈리로 이어질 수 있다. 본 연구에서는 콘크리트의 스켈링에 대한 저염화물계 제설제(low chloride deicier, LCD)와 염화칼슘 및 염화나트륨 제설제의 상대적인 영향을 ASTM C672에 준하여 실시하였다. 시험 제설제의 농도는 1, 4, 10% 이고, 수돗물은 기준으로 사용하였다. 박리량은 중량으로 평가하였다. 연구결과 4% 농도를 적용하였을 때, 동결융해 56 싸이클 후 콘크리트의 박리는 수돗물에 비해 LCD 용액에서 약 9배, 염화칼슘 용액에서 약 18배, 염화나트륨 용액에서 약 33배 정도 크게 발생하였다. 용액의 농도에 따라서는 고농도인 10%에 비해 4% 농도에서 표면 박리가 가장 현저하게 발생하였는데, 이는 스켈링 발생이 염농도가 3~4%일 때 가장 현저해진다는 기존의 연구결과와 일치함을 알 수 있었다(일본콘크리트공학회, 1999). 또한 콘크리트가 경화된 후, 현장에서 염화나트륨 및 저염화물계 제설제(LCD, 염소이온 중량비 50%)가 살포되고 동결융해 싸이클에 노출된 경우, 제설제에 노출되지 않은 경우의 콘크리트 동해열화에 대해, 콘크리트의 공기량에 따른 영향을 실험적으로 연구하였다. 연구 결과 동결융해 싸이클에 따른 콘크리트 시편은 제설제에 노출되지 않은 것 보다 염화물 제설제 노출에서 스켈링이 더 심한 것으로 나타났고, 염화물 제설제에 노출된 시편이 노출되지 않은 시편 보다 중량 손실이 2배나 되었다. 콘크리트 시편의 상대 동탄성계수는 염화물 제설제에 노출되지 않은 것과 비교하여 염화물 제설제에 노출된 것에서 더 빠르게 감소하였다. 또한 염화나트륨 제설제에 노출된 콘크리트 시편의 상대 동탄성계수는 저염화물계 제설제에 노출된 것 보다 더 빠르게 감소하였다. AE 콘크리트는 염화물과 동결융해 싸이클에 노출되었을 때, Non-AE 콘크리트 보다 성능저하가 크게 지연되었다.