Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.4.323

Electrochemical Performance of M2GeO4 (M = Co, Fe and Ni) as Anode Materials with High Capacity for Lithium-Ion Batteries  

Yuvaraj, Subramanian (Department of Chemical Engineering, Hanyang University)
Park, Myung-Soo (Department of Chemical Engineering, Hanyang University)
Kumar, Veerasubramani Ganesh (Department of Chemical Engineering, Hanyang University)
Lee, Yun Sung (Faculty of Chemical Engineering, Chonnam National University)
Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.4, 2017 , pp. 323-330 More about this Journal
Abstract
$M_2GeO_4$ (M = Co, Fe and Ni) was synthesized as an anode material for lithium-ion batteries and its electrochemical characteristics were investigated. The $Fe_2GeO_4$ electrode exhibited an initial discharge capacity of $1127.8mAh\;g^{-1}$ and better capacity retention than $Co_2GeO_4$ and $Ni_2GeO_4$. A diffusion coefficient of lithium ion in the $Fe_2GeO_4$ electrode was measured to be $12.7{\times}10^{-8}cm^2s^{-1}$, which was higher than those of the other two electrodes. The electrochemical performance of the $Fe_2GeO_4$ electrode was improved by coating carbon onto the surface of $Fe_2GeO_4$ particles. The carbon-coated $Fe_2GeO_4$ electrode delivered a high initial discharge capacity of $1144.9mAh\;g^{-1}$ with good capacity retention. The enhanced cycling performance was mainly attributed to the carbon-coated layer that accommodates the volume change of the active materials and improves the electronic conductivity. Our results demonstrate that the carbon-coated $Fe_2GeO_4$ can be a promising anode material for achieving high energy density lithium-ion batteries.
Keywords
$M_2GeO_4$ electrode; Anode material; Lithium-ion battery; Carbon coating;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 E. Karden, S. Ploumen, B. Fricke, T. Miller and K. Snyder, J. Power Sources, 2007, 168(1), 2-11.   DOI
2 M. Armand and J. M. Tarascon, Nature, 2008, 451(7179), 652-657.   DOI
3 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262.   DOI
4 Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, Chem. Rev., 2011, 111(5), 3577-3613.   DOI
5 J. B. Goodenough and K. S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176.   DOI
6 K. Persson, et al. Chem. Lett., 2010, 1(8), 1176-1180.
7 N. A. Kaskhedikar and J. Maier, Adv. Mater., 2009, 21(25-26), 2664-2680.   DOI
8 A.G. Kannan, S.H. Kim, H.S. Yang and D.-W. Kim, RSC Adv., 2016, 6(30), 25159-25166.   DOI
9 M. M. Thackerey, C. Wolverton and E. D. Isaacs, Energy Environ. Sci., 2012, 5(7), 7854-7863.   DOI
10 T.-Y. Kim, J.-B. Kim, H.-J. Ahn and S.-M. Lee, J. Electrochem. Sci. Technol., 2011, 2(4), 193-197.   DOI
11 S.-H. Lee, J. Sung, and S.-S. Kim, J. Korean Electrochem. Soc., 2015, 18(2), 68-74.   DOI
12 S.-H. Kim, S.-H. Yook, A.G. Kannan, S.K. Kim, C. Park and D.-W. Kim, Electrochim. Acta, 2016, 209, 278-284.   DOI
13 X. Leng, S. Wei, Z. Jiang, J. Lian, G. Wang and Q. Jiang, Sci. Rep., 2015, 5, 16629   DOI
14 Z. Yu, H. Jiang, D. Gu, J. Li, L. Wang and L. Shen, J. Electrochem. Sci. Technol., 2016, 7(2), 170-178.   DOI
15 R. Verrelli, R. Brescia, A. Scarpellini, L. Manna, B. Scrosati and J. Hassoun, RSC Adv., 2014, 4(106), 61855-61862.
16 H. Su, Y. -F. Xu, S. -C. Feng, Z. -G. Wu, X. -P. Sun, C. -H. Shen, J. -Q. Wang, J. -T. Li, L. Huang and S. -G. Sun, ACS Appl. Mater. Interfaces, 2015, 7, 8488.   DOI
17 S. Jin and C. Wang, Nano Energy, 2017, 7, 63.
18 S. Yuvaraj, S. Amaresh, Y. S. Lee and R. K. Selvan, RSC Adv., 2014, 4(13), 6407-6416.   DOI
19 S. Yuvaraj, K. Karthikeyan, L. Vasylechko and R. K. Selvan, Electrochim. Acta, 2015, 158, 446-456.   DOI
20 S. Yuvaraj, K. Kaliyappan and R. K. Selvan, J. Colloid and Inter. Sci., 2017, 498, 76-84.   DOI
21 B. S. Hong, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu and Y. T. Qian, Adv. Funct. Mater., 2003, 13(8), 639-647.   DOI
22 S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee and R. K. Selvan, J. Colloid and Inter. Sci., 2016, 469, 47-56.   DOI
23 F. Zhang, R. Zhang, Z. Zhang, H. Wang and J. Feng, Electrochim. Acta, 2014, 150, 211-217.   DOI
24 S. Jin, G. Yang, H. Song, H. Cui and C. Wang, ACS Appl. Mater. Interfaces, 2015, 7(44), 24932-24943.   DOI
25 Y. R. Lim, C. S. Jung, H. S. Im, K. Park, J. Park, W. Il Cho and E. H. Cha, J. Mater. Chem. A, 2016, 4(27), 10691-10699.   DOI
26 Jin, X. Li, H. Ming, H. Wang, Z. Jia, Y. Fu, J. Adkins, Q. Zhou and J. Zhang, RSC Adv., 2014, 4(12), 6083-6089.   DOI
27 H. Long, T. Shi, H. Hu, S. Jiang, S. Xi and Z. Tang, Sci. Rep., 2014, 4, 7413.
28 C. Lai, Y. Y. Dou, X. Li and X. P. Gao, J. Power Sources, 2010, 195(11), 3676-3679.   DOI
29 S. Li, X. Li, Y. Li, B. Yan, X. Song, L. Fan, H. Shan and D. Li, J. Alloys and Compd, 2017, 722, 278-286.   DOI
30 L. Luo, D. Li, J. Zhang, C. Chen, J. Zhu, H. Qiao, Y. Cai, K. Lu, X. Zhang and Q. Wei, Energy Technol., 2017, 5(8), 1364-1372.   DOI