• 제목/요약/키워드: cycling performance

검색결과 342건 처리시간 0.027초

Electrochemical Performances of the Sn-Cu Alloy Negative Electrode Materials through Simple Chemical Reduction Method

  • Oh, Ji Seon;Kim, Duri;Chae, Seung Ho;Oh, Seungjoo;Yoo, Seong Tae;Kim, Haebeen;Ryu, Ji Heon
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.329-334
    • /
    • 2019
  • Sn-Cu alloy powders were prepared via a simple chemical reduction method for the negative electrode materials in lithiumion batteries. The addition of Cu can suppress the growth of Sn particles during synthetic process. Furthermore, the Cu also acts as a matrix phase against the volume change during cycling. With increasing amount of the Cu, a stable $Cu_6Sn_5$ phase formed in the Sn-Cu alloy and its cycle performance greatly enhanced depending on the Cu content. To promote the generation of the $Cu_6Sn_5$ phase, the synthesis temperature is raised to $60-100^{\circ}C$ from the ambient temperature. The Sn-Cu alloy powders prepared at elevated temperatures showed remarkable cycle performances. The Sn-Cu alloy powder obtained at $60^{\circ}C$ exhibited a significantly high volumetric capacity of over 2,000 mAh/cc at the 50th cycle.

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang;Cheng, Yulong;Ke, Xinyou;Ren, Guofeng;Zhu, Fuliang
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.285-295
    • /
    • 2021
  • The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

Triallyl Borate as an Effective Separator/Cathode Interphase Modifier for Lithium-ion Batteries

  • Ha Neul Kim;Hye Rim Lee;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.272-282
    • /
    • 2023
  • Ni-rich layered oxides cathode has recently gained attention as an advanced cathode material due to their applicable energy density. However, as the Ni component in the layered site is increased, the high reactivity of Ni4+ results in parasitic reaction associated with decomposing electrolyte, which leads to a rapid decreasing the lifespan of the cell. The electrolyte additive triallyl borate (TAB) improves interfacial stability, leading to a stable cathode-electrolyte interphase (CEI) layer on the LNCM83 cathode. A multi-functionalized TAB additive can produce a uniformly distributed CEI layer via electrochemical oxidation, which implies an increase in long-term cycling performance. After 100 cycles at elevated temperature, the cell tested by 0.75 TAB retained 88.3% of its retention ratio, whereas the cell performed by TAB-free electrolyte retained 64.1% of its retention. Once the TAB additive formed CEI layers on the LNCM83 cathode, it inhibited the decomposition of carbonate-based solvents species in addition to the dissolution of transition metal components from the cathode. The addition of TAB to LNCM83 cathode material is believed to be a promising way to increase the electrochemical performance.

전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향 (Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes)

  • 윤정명;박철민
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.466-477
    • /
    • 2023
  • The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.

공침법을 통한 나노로드 형태의 니켈계 양극 소재 개발에 관한 연구 (A Study on the Development of Nanorod-Type Ni-Rich Cathode Materials by Using Co-Precipitation Method)

  • 박주혁
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.215-222
    • /
    • 2024
  • Ni-rich cathode materials have been developed as the most promising candidates for next-generation cathode materials for lithium-ion batteries because of their high capacity and energy density. In particular, the electrochemical performance of lithium-ion batteries could be enhanced by increasing the contents of nickel ion. However, there are still limitations, such as low structural stability, cation mixing, low capacity retention and poor rate capability. Herein, we have successfully developed the nanorod-type Ni-rich cathode materials by using co-precipitation method. Particularly, the nanorod-type primary particles of LiNi0.7Co0.15Mn0.15O2 could facilitate the electron transfer because of their longitudinal morphology. Moreover, there were holes at the center of secondary particles, resulting in high permeability of the electrolyte. Lithium-ion batteries using the prepared nanorod-type LiNi0.7Co0.15Mn0.15O2 achieved highly improved electrochemical performance with a superior rate capability during battery cycling.

폴리싱 타일 접착용 유·무기계 접착제와 유기계 접착제의 성능 평가 (Performance Evaluation of Organic-Inorganic Adhesives and Organic Adhesives for Polishing Tile Adhesion)

  • 서종오;전진호;박창환;조성현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.211-212
    • /
    • 2023
  • Polishing tiles among porcelain tiles are more durable and aesthetic than ceramic tiles, so their demand has recently increased. In particular, since polishing tiles have a very low absorption rate, organic adhesives with chemical bonds are mainly used. However, organic adhesives have low economic efficiency and some volatile organic compounds (TVOCs). Therefore purpose of this study was to evaluate the performance of polishing tile adhesion by developing organic-inorganic adhesives, which have chemical bonds and mechanical bonds. As a result, since the amorphous chain and chemical bonds of the polymer in the tile adhesives, both tensile and shear adhesion strength were satisfied with the KS L 1592, KS L 1593, and the rate of length change itself in the thermal cycling was lower than organic adhesives. So it is thought that it is possible to replace some organic adhesives.

  • PDF

전기 이중층 커패시터를 위한 다공성 탄소나노섬유의 메조 기공 제어 효과 (Mesoporous Control Effect of Porous Carbon Nanofibers for Electrical Double-Layer Capacitors)

  • 조현기;신동요;안효진
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.167-174
    • /
    • 2019
  • To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of $696m^2g^{-1}$, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of $110.1F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$ and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of $0.1A\;g^{-1}$. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.

천장 브래킷을 이용한 완전강접합 모듈러 시스템의 구조성능 (Structural Performance of the Modular System with Fully Restrained Moment Connections using Ceiling Bracket)

  • 이승재;곽의신;박재성;강창훈;손수덕
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.37-44
    • /
    • 2017
  • Due to structural characteristics, construction costs and duration of a modular system would be saved by minimizing the schedule on the job site. As such, it is crucial to develop a connection that can guarantee stiffness while allowing for simple assembling. Particularly, the mid- to high-rise construction of the modular system necessitates the securing of the structural stability and seismic performance of multi-unit frames and connections, and thus, the stiffness of unit-assembled structures needs to be re-evaluated and designed. However, evaluating a frame consisting of slender members and reinforcing materials is a complicated process. Therefore, the present study aims to examine the structural characteristics of a modular unit connection based a method for reinforcing connection brackets and hinges while minimizing the loss of the cross section. Toward this end, the study modeled the beam-to-column connection of a modular system with the proposed connection, and produced a specimen which was used to perform a cycling loading test. The study compared the initial stiffness, the attributes of the hysteretic behavior, and the maximum flexural moment, and observed whether the model acquired the seismic performance, compared to the flexural strength of the steel moment frame connection that is required by the Korean Building Code. The test results showed that the proposed connection produced a similar initial stiffness value to that of the theoretical equation, and its maximum strength exceeded the theoretical strength. Furthermore, the model with a larger ceiling bracket showed higher seismic performance, which was further increased by the reinforcement of the plate.

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu;Kim, Jeong-Tae;Kennedy, Ssendagire;Ravi, Muchakayala;Lee, Yong Min;Ryou, Myung-Hyun
    • 전기화학회지
    • /
    • 제25권1호
    • /
    • pp.32-41
    • /
    • 2022
  • Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

제한된 측정 자료 기반 의암호 3차원 조류 예측 모델링 연구 (Three-dimensional Algal Dynamics Modeling Study in Lake Euiam Based on Limited Monitoring Data)

  • 최정규;민중혁;김덕우
    • 한국물환경학회지
    • /
    • 제31권2호
    • /
    • pp.181-195
    • /
    • 2015
  • Algal blooms in lakes are one of major environmental issues in Korea. A three-dimensional, hydrodynamic and water quality model was developed and tested in Lake Euiam to assess the performance and limitations of numerical modeling with multiple algal groups using field data commonly collected for algal management. In this study, EFDC was adopted as the basic model framework. Simulated vertical profiles of water temperature, dissolved oxygen and nutrients monitored at five water quality monitoring stations from March to October 2013, which are closely related to algal dynamics simulation, showed good agreement with those of observed data. The overall spatio-temporal variations of three algal groups were reasonably simulated against the chlorophyll-a levels of those estimated from the limited monitoring data (chlorophyll-a level and cell numbers of algal species) with the RMSEs ranging from 2.6 to $17.5mg/m^3$. Also, note that $PO_4-P$ level in the water column was a key limiting factor controlling the growth of three algal groups during most of simulation period. However, the algal modeling results were not fully attainable to the levels of observation during short periods of time showing abrupt increase in algae throughout the lake. In particular, the green algae/cyanobacteria and diatom simulations were underestimated in late June to early July and early October, respectively. The results shows that better understanding of internal algal processes, neglected in most algal modeling studies, is necessary to predict the sudden algal blooms more accurately because the concentrations of external $PO_4-P$ and specific algal groups originated from the tributaries (mainly, dam water releases) during the periods were too low to fully capture the sharp rise of internal algal levels. In this respect, this study suggests that future modeling efforts should be focused on the quantification of internal cycling processes including vertical movement of algal species with respect to changes in environmental conditions to enhance the modeling performance on complex algal dynamics.