Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.3.167

Mesoporous Control Effect of Porous Carbon Nanofibers for Electrical Double-Layer Capacitors  

Jo, Hyun-Gi (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.3, 2019 , pp. 167-174 More about this Journal
Abstract
To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of $696m^2g^{-1}$, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of $110.1F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$ and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of $0.1A\;g^{-1}$. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.
Keywords
electrical double layer capacitor; electrospinning; mesoporous structure; carbon nanofiber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald and R. S. Ruoff, Nat. Nanotechnol., 9, 618 (2014).   DOI
2 Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff1, Science, 332, 1537 (2011).   DOI
3 H.-J. Ahn, J. I. Sohn, Y.-S. Kim, H-S. Shim, W. B. Kim and T.-Y. Seong, Electrochem. Commun., 8, 513 (2006).   DOI
4 Y.-J. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 24, 37 (2014).   DOI
5 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 640 (2018).   DOI
6 D.-Y. Sin, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 25, 0 (2015).
7 J. Duay, S. A. Sherrill, Z. Gui, E. Gillette and S. B. Lee, ACS Nano, 7, 1200 (2013).   DOI
8 Y.-G. Lee, G-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017).   DOI
9 G.-H. An and H.-J. Ahn, Carbon, 65, 87 (2013).   DOI
10 G.-H. An, B-R. Koo and H.-J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016).   DOI
11 D.-Y. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 617 (2017).   DOI
12 L. Wei and G. Yushin, Nano Energy, 1, 552 (2012).   DOI
13 M. J. B. Martinez, J. A. M. Agullo, D. L. Castello, E. Morallon, D. C. Amoros and A. L. Solano, Carbon, 43, 2677 (2005).   DOI
14 D.-Y. Sin, I.-K. Park and H.-J. Ahn, RSC Adv., 6, 58823 (2016).   DOI
15 Q. Li, F. Liu, L. Zhang, B. J. Nelsonb, S. Zhang, C. Ma, X. Tao, J. Cheng and X. Zhang, J. Power Sources, 207, 199 (2012).   DOI
16 B.-H. Kim and K. S. Yang, J. Electroanal. Chem., 714, 92 (2014).   DOI
17 G.-H. An and H.-J. Ahn, ECS Solid State Lett., 2, M33 (2013).   DOI