DOI QR코드

DOI QR Code

Triallyl Borate as an Effective Separator/Cathode Interphase Modifier for Lithium-ion Batteries

  • Ha Neul Kim (Advanced Batteries Laboratory, Department of Chemistry, Incheon National University) ;
  • Hye Rim Lee (Advanced Batteries Laboratory, Department of Chemistry, Incheon National University) ;
  • Taeeun Yim (Advanced Batteries Laboratory, Department of Chemistry, Incheon National University)
  • Received : 2023.02.23
  • Accepted : 2023.04.04
  • Published : 2023.08.31

Abstract

Ni-rich layered oxides cathode has recently gained attention as an advanced cathode material due to their applicable energy density. However, as the Ni component in the layered site is increased, the high reactivity of Ni4+ results in parasitic reaction associated with decomposing electrolyte, which leads to a rapid decreasing the lifespan of the cell. The electrolyte additive triallyl borate (TAB) improves interfacial stability, leading to a stable cathode-electrolyte interphase (CEI) layer on the LNCM83 cathode. A multi-functionalized TAB additive can produce a uniformly distributed CEI layer via electrochemical oxidation, which implies an increase in long-term cycling performance. After 100 cycles at elevated temperature, the cell tested by 0.75 TAB retained 88.3% of its retention ratio, whereas the cell performed by TAB-free electrolyte retained 64.1% of its retention. Once the TAB additive formed CEI layers on the LNCM83 cathode, it inhibited the decomposition of carbonate-based solvents species in addition to the dissolution of transition metal components from the cathode. The addition of TAB to LNCM83 cathode material is believed to be a promising way to increase the electrochemical performance.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) (NRF-2022R1F1A1069039 and 2017R1A6A1A06015181), and the Technology Innovation Program (20011905) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J. M. Kim, M.- S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25.  https://doi.org/10.33961/jecst.2019.00619
  2. J. Kim, S. Lee, K.W. Kim, J. Son, and J. Mun, J. Electrochem. Sci. Technol., 2021, 12(4), 424-430.  https://doi.org/10.33961/jecst.2021.00353
  3. H.-J. Kwon, J.-I. Son, and S.-M. Lee, J. Electrochem. Sci. Technol., 2021, 12(1), 74-81.  https://doi.org/10.33961/jecst.2020.01354
  4. D. H. Yoon and Y. J. Park, J. Electrochem. Sci. Technol., 2021, 12(1), 126-136.  https://doi.org/10.33961/jecst.2020.01361
  5. W. Zhao, W. Choi, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(3), 195-219.  https://doi.org/10.33961/jecst.2020.00745
  6. X. Shi, T. Zheng, J. Xiong, B. Zhu, Y.-J. Cheng, and Y. Xia, ACS Appl. Mater. Interfaces, 2021, 13(48), 57107-57117.  https://doi.org/10.1021/acsami.1c15690
  7. Y. R. Lim, Y. Ko, J. Park, W. I. Cho, S. A. Lim, and E. Cha, J. Electrochem. Sci. Technol., 2019, 10(1), 89-97. 
  8. X. Yan, C. Chen, X. Zhu, L. Pan, X. Zhao, and L. Zhang, J. Power Sources, 2020, 461, 228099. 
  9. D. W. Kim, D. Park, C. H. Ko, K. Shin, and Y.-S. Lee, J. Electrochem. Sci. Technol., 2021, 12(2), 237-245.  https://doi.org/10.33961/jecst.2020.01599
  10. W. M. Seong, K.-H. Cho, J.-W. Park, H. Park, D. Eum, M. H. Lee, I. S. Kim, J. Lim, and K. Kang, Angew. Chem. Int. Ed., 2020, 59(42), 18662-18669.  https://doi.org/10.1002/anie.202007436
  11. R. S. Negi, E. Celik, R. Pan, R. Staglich, J. Senker, and M. T. Elm, ACS Appl. Energy Mater., 2021, 4(4), 3369-3380.  https://doi.org/10.1021/acsaem.0c03135
  12. X. Wang, Y.-L. Ding, Y.-P. Deng, and Z. Chen, Adv. Energy Mater., 2020, 10(12), 1903864. 
  13. S. Jeong, K. Choi, V.-C. Ho, J. Cho, J.-S. Bae, S. C. Nam, T. Yim, and J. Mun, Chem. Eng. J., 2022, 434, 134577. 
  14. S. Jeong, J. H. Park, S. Y. Park, J. Kim, K. T. Lee, Y. D. Park, and J. Mun, ACS Appl. Mater. Interfaces, 2021, 13(19), 22475-22484.  https://doi.org/10.1021/acsami.1c03680
  15. Y. Qiao, R. Hao, X. Shi, Y. Li, Y. Wang, Y. Zhang, C. Tang, G. Li, G. Wang, J. Liu, H. Liu, Y. Chen, Q. Li, and L. Li, ACS Appl. Energy Mater., 5(4), 2022, 4885-4892.  https://doi.org/10.1021/acsaem.2c00276
  16. H. V. Ramasamy, S. Sinha, J. Park, M. Gong, V. Aravindan, J. Heo, and Y.-S. Lee, J. Electrochem. Sci. Technol., 2019, 10(2), 196-205. 
  17. C. B. Lim and Y. J. Park, J. Electrochem. Sci. Technol., 2020, 11(4), 411-420. 
  18. H.-H. Ryu, B. Namkoong, J.-H. Kim, I. Belharouak, C. S. Yoon, and Y.-K. Sun, ACS Energy Lett., 2021, 6(8), 2726-2734.  https://doi.org/10.1021/acsenergylett.1c01089
  19. S. Lee and T. Yim, J. Power Sources, 2022, 551, 232202. 
  20. F. T. Geldasa, M. A. Kebede, M. W. Shura, and F. G. Hone, RSC Adv., 2022, 12, 5891-5909.  https://doi.org/10.1039/D1RA08401A
  21. N. S. Luu, K.-Y. Park, and M. C. Hersam, Acc. Mater. Res., 2022, 3(5), 511-524.  https://doi.org/10.1021/accountsmr.1c00282
  22. Y. J. Jeon and T. Yim, Curr. Appl. Phys., 2023, 46, 76-82. 
  23. J. Ahn, J. Im, H. Seo, S. Yoon, and K. Y. Cho, J. Power Sources, 2021, 512, 230513. 
  24. J. Lu, S. Li, L. Jiang, T. Yang, W. Fan, W. Wang, X. Zhao, X. Zuo, and J. Nan, ChemElectroChem, 2021, 8(19), 3716-3725.  https://doi.org/10.1002/celc.202101067
  25. R. S. Negi, Y. Yusim, R. Pan, S. Ahmed, K. Volz, R. Takata, F. Schmidt, A. Henss, and M. T. Elm, Adv. Mater. Interfaces, 2022, 9(8), 2101428. 
  26. R. S. Negi and M. T. Elm, Sci. Data, 2022, 9, 127. 
  27. Y. Hou, Y. Ren, T. Shi, J. Li, H. Li, L. Zhang, Y. Liu, Y. Wan, S. Zhang, and D. Zhu, J. Alloys Compd., 2023, 168778. 
  28. S.-J. Jo, D.-Y. Hwang, and S.-H. Lee, ACS Appl. Energy Mater., 2021, 4(4), 3693-3700.  https://doi.org/10.1021/acsaem.1c00130
  29. C.-H. Lin, S.-K. Parthasarathi, S. Bolloju, M. Abdollahifar, Y.-T. Weng, and N.-L. Wu, Energies, 2022, 15(21), 8129. 
  30. L. Yao, F. Liang, J. Jin, B. V. R. Chowdari, J. Yang, and Z. Wen, Chem. Eng. J., 2020, 389, 124403. 
  31. H. J. Ban, M.-Y. Kim, S.-J. Park, B.-S. Kang, J. Lim, Y. Hong, S. H. Yang, and H.-S. Kim, Surf. Coat. Technol., 2022, 430, 127984. 
  32. A. S. Rad and M. Ghorbanzadeh, Mater. Res. Express, 2019, 6, 086471. 
  33. X. Xi, Y. Fan, Y. Liu, Z. Chen, J. Zou, and S. Zhu, J. Alloys Compd., 2021, 872, 159664. 
  34. M. A. R. Khollari, M. K. Azar, M. Esmaeili, N. Malekpour, S. M. Hosseini-Hosseinabad, R. S. Moakhar, A. Dolati, and S. Ramakrishna, ACS Appl. Energy Mater., 2021, 4(5), 5304-5315.  https://doi.org/10.1021/acsaem.1c00827
  35. J. H. Sung, T. W. Kim, H.-K. Kang, S. Y. Choi, F. Hasan, S. K. Mohanty, J. Kim, M. K. Srinivasa, H.-C. Shin, and H. D. Yoo, Korean J. Chem. Eng., 2021, 38(5), 1059-1065.  https://doi.org/10.1007/s11814-021-0766-8
  36. P. Zou, Z. Lin, M. Fan, F. Wang, Y. Liu, and X. Xiong, Appl. Surf. Sci., 2020, 504, 144506. 
  37. Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen, J. Paulsen, S. Kumakura, M. Zhang, and Y. S. Meng, Adv. Energy Mater., 2022, 12(11), 2103033. 
  38. J. Li, X. Yang, X. Guan, R. Guo, Y. Che, J. Lan, L. Xing, M. Xu, W. Fan, W. Li, Electrochim. Acta, 2020, 354, 136722.  https://doi.org/10.1016/j.electacta.2020.136722
  39. S. H. Lim, K. Jung, K.-J. Lee, J. Mun, Y.-K. Han, and T. Yim, Int. J. Energy Res., 2021, 45(2), 2138-2147.  https://doi.org/10.1002/er.5907
  40. M. J. Seong, S. G. Park, H. Kim, S. Manivannan, K. Kim, S. H. Oh, and T. Yim, Curr. Appl. Phys., 2021, 26, 72-77.  https://doi.org/10.1016/j.cap.2021.03.011
  41. W. M. Dose, W. Li, I. Temprano, C. A. O'Keefe, B. L. Mehdi, M. F. De Volder, and C. P. Grey, ACS Energy Lett., 2022, 7(10), 3524-3530.  https://doi.org/10.1021/acsenergylett.2c01722
  42. W. M. Dose, I. Temprano, J. P. Allen, E. Bjorklund, C. A. O'Keefe, W. Li, B. L. Mehdi, R. S. Weatherup, M. F. De Volder, and C. P. Grey, ACS Appl. Mater. Interfaces, 2022, 14(11), 13206-13222.  https://doi.org/10.1021/acsami.1c22812
  43. L. Mu, Z. Yang, L. Tao, C. K. Waters, Z. Xu, L. Li, S. Sainio, Y. Du, H. L. Xin, D. Nordlund, and F. Lin, J. Mater. Chem. A, 2020, 8, 17487-17497.  https://doi.org/10.1039/D0TA06375D
  44. R. Tatara, P. Karayaylali, Y. Yu, Y. Zhang, L. Giordano, F. Maglia, R. Jung, J. P. Schmidt, I. Lund, and Y. ShaoHorn, J. Electrochem. Soc., 2018, 166, A5090. 
  45. J. Jung, H. J. Hah, J. G. Lee, J. B. Lee, J. Kim, J. Soon, J. H. Ryu, J. J. Kim, and S. M. Oh, J. Electrochem. Sci. Technol., 2017, 8(1), 15-24.  https://doi.org/10.33961/JECST.2017.8.1.15
  46. X. Liu, M. Gao, J. Zhao, X. Sun, Z. Li, Q. Li, L. Wang, J. Wang, and W. Zhuang, J. Power Sources, 2021, 495, 229793. 
  47. S. Mai, M. Xu, X. Liao, J. Hu, H. Lin, L. Xing, Y. Liao, X. Li, and W. Li, Electrochim. Acta, 2014, 147, 565-571.  https://doi.org/10.1016/j.electacta.2014.09.157
  48. S. Han, Y. Liu, H. Zhang, C. Fan, W. Fan, L. Yu, and X. Du, Surf. Interface Anal., 2020, 52(6), 364-373.  https://doi.org/10.1002/sia.6744
  49. L. Baggetto, D. Mohanty, R. A. Meisner, C. A. Bridges, C. Daniel, D. L. Wood III, N. J. Dudney, and G. M. Veith, RSC Adv., 2014, 4, 23364-23371.  https://doi.org/10.1039/c4ra03674c