• Title/Summary/Keyword: cyclin

Search Result 645, Processing Time 0.021 seconds

Effects of Cervi Parvum Cornu on the Cell Cycle Regulation in Human Periodontal Ligament Cells (녹용이 치주인대세포의 세포주기조절에 미치는 영향)

  • You Seung Han;Choi Hee In;Kim Hyun A;Kim Yun Sang;Shin Hyung Shik;You Hyung Keun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.157-164
    • /
    • 2003
  • Cervi Parvum Cornu(CPC) is that the young horn of deer family and has been traditionally used as a medicine in Eastern. The purpose of present study was to investigate the effects of CPC on cell cycle progression and its molecular mechanism in human periodontal ligament cells (HPOLC). In cell proliferation assay, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1 ㎍/ml and 10 ㎍/ml of CPC were used, all treatment groups increased the cell growth. Maximal cell proliferation was observed in cells exposed to 100 ng/ml of CPC at 4 day, and 10 ng/ml and 100 ng/ml of CPC at 6 days. S phase was increased and G1 phase was decreased in the group treated with 100 ng/ml of CPC in cell cycle analysis. The protein levels of cyclin D1 were not changed, but the levels of cyclin E, cdk 2, cdk 4 and cdk 6 were increased. The protein levels of p21, pRb were decreased as compared to that of control group, but the levels of p53 was not changed in the cells both treated with CPC Md untreated. These results suggested that CPC increases the cell proliferation and cell cycle progression in HPDLC, which is linked to an increased cellular levels of cyclin E, cdk 2, cdk 4 and cdk 6, and decreased the levels of p53, p21.

G1 Arrest of the Cell Cycle by Onchungeum in Human Hepatocarcinoma Cells (온청음(溫淸飮)이 인체 간암세포의 세포주기 G1 Arrest에 미치는 영향)

  • Goo, In-Moo;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.821-828
    • /
    • 2008
  • Onchungeum, a herbal formula, which has been used for treatment of anemia due to bleeding, discharging blood and skin disease. In the present study, it was examined the effects of extract of Onchungeum (OCE) on the growth of human hepatocarcinoma cell lines Hep3B (p53 null type) and HepG2 (p53 wild type) in order to investigate the anti-proliferative mechanism by OCE. Treatment of Hep3B and HepG2 cells to OCE resulted in the growth inhibition in a dose-dependent manner, however Hep3B cell line exhibited a relatively strong anti-proliferative activity to OEC. Flow cytometric analysis revealed that OCE treatment in Hep3B cells caused G1 phase arrest of the cell cycle, which was associated with various morphological changes in a dose-dependent fashion. RT-PCR and immunoblotting data revealed that treatment of OCE caused the down-regulation of cyclin D1 expression, however the levels of cyclin E expression were not changed by OCE. The G1 arrest of the cell cycle was also associated with the induction of Cdk inhibitor p27 by OCE. Because the p53 gene is null in Hep3B cells, it is most likely that the induction of p21 is mediated through a p53-independent pathway. Moreover, p27 detected in anti-Cdk4 and anti-Cdk2 immunoprecipitates from the OCE-treated cells, suggesting that OCE-induced p27 protein blocks Cdk kinase activities by directing binding to the cyclin/Cdk complexes. Furthermore, OCE treatment potently suppresses the phosphorylation of retinoblastoma proteins and the levels of the transcription factor E2F-1 expression. Taken together, these results indicated that the growth inhibitory effect of OCE in Hep3B hepatoma cells was associated with the induction of G1 arrest of the cell cycle through regulation of several major growth regulatory gene products.

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.

Ochnaflavone, a Natural Biflavonoid, Induces Cell Cycle Arrest and Apoptosis in HCT-15 Human Colon Cancer Cells

  • Kang, You-Jin;Min, Hye-Young;Hong, Ji-Young;Kim, Yeong-Shik;Kang, Sam-Sik;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Ochnaflavone is a natural biflavonoid and mainly found in the caulis of Lonicera japonica (Caprifoliaceae). Biological activities such as anti-inflammatory and anti-atherogenic effects have been previously reported. The anticancer activity of ochnaflavone, however, has been poorly elucidated yet. In the present study, we investigated the effect of ochnaflavone on the growth inhibitory activity in cultured human colon cancer cell line HCT-15. Ochnaflavone inhibited the proliferation of the cancer cells with an $IC_{50}$ value of $4.1{\mu}M$. Flow cytometric analysis showed that ochnaflavone arrested cell cycle progression in the G2/M phase, and induced the increase of sub-G1 peak in a concentration-dependent manner. Induction of cell cycle arrest was correlated with the modulation of the expression of cell cycle regulating proteins including cdc2 (Tyr15), cyclin A, cyclin B1 and cyclin E. The increase of sub-G1 peak by the higher concentrations of ochnaflavone (over $20{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, activation of caspase-3, -8 and -9, and cleavage of poly-(ADP-ribose) polymerase. These findings suggest that the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of ochnaflavone in human colon cancer cells.

Inhibition of Cell-Cycle Progression in Human Promyelocytic Leukemia HL-60 Cells by MCS-C2, Novel Cyclin-Dependent Kinase Inhibitor

  • Kim, Min-Kyoung;Cho, Youl-Hee;Kim, Jung-Mogg;Chun, Moon-Woo;Lee, Seung-Ki;Lim, Yoong-Ho;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.607-612
    • /
    • 2003
  • To elucidate the action mechanism of MCS-C2, a novel analogue of toyocamycin and sangivamycin, its effect on the expression of cell cycle-related proteins in the human myelocytic leukemia cell line HL-60 was examined using Western blotting and a flow cytometric analysis. MCS-C2, a selective inhibitor of cyclin-dependent kinases, was found to inhibit cell growth in a time- and dose-dependent manner, and inhibits cell cycle progression by inducing the arrest at G1 and G2/M phases, in HL-60 cells. The flow cytometric analysis revealed an appreciable arrest of cells in the G2/M phase of the cell cycle after treatment with MCS-C2. The HL-60 cell population increased gradually from 13% at 0 h, to 28% at 12 h in the G2/M phase, after exposure to $2{\;}\mu\textrm{M}$ MCS-C2. Furthermore, Western blot analysis demonstrated that MCS-C2 induced the cell cycle arrest at G1 phase through the inhibition of pRb phosphorylation. Hypophosphorylated pRb accumulated after treatment with $5{\;}\mu\textrm{M}$ MCS-C2 for 12 h, whereas, the level of hyperphosphorylated pRb was reduced. Thus, treatment of the cell with MCS-C2 suppressed the hyperphosphorylated form of pRb with a commensurate increase in the hypophosphorylated form.

Apoptotic Effects of psiRNA-STAT3 on 4T1 Breast Cancer Cells in Vitro

  • Zhou, Yue;Tian, Lin;Zhang, Ying-Chao;Guo, Bao-Feng;Zhou, Qing-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6977-6982
    • /
    • 2014
  • Background: The aim of this study was to investigate the effect of a Lipofectamine2000 (Life2000) Transfection Reagent transfected psiRNA-STAT3 plasmid on 4T1 breast cancer cells. Materials and Methods: MTT was used to detect the cell proliferation of breast cancer 4T1 cells at different periods (0h, 6h, 8h, 10h); the cell cycle was assessed by flow cytometry; variation of apoptosis and mitochondrial membrane potential was observed under a fluorescence microscope; immunohistochemical staining was used to determine the expression of caspase-3 and cyclin-D1 protein. Results: An obvious effect of inhibition to 4T1 cancer cells could be observed at 8h after the psiRNA-STAT3 was transfected. Typical alterations of apoptotic morphological features were visible in the psiRNA-STAT3 treatment group. Mitochondrial membrane potential decreased significantly, the number of cells was increased in G0/G1 phase, and the number of cells was decreased in S phase, and the data were statistically significant (p<0.05), compared with the Scramble and Mock groups. Expression of caspase-3 protein was increased significantly, while that of cyclin D1 was significantly decreased. Conclusions: Life2000 transfected psiRNA-STAT3 plasmid can inhibit 4T1 tumor cell proliferation and promote apoptosis of 4T1 tumor cells, which process depends on the regulation of expression of cyclin D1 and caspase-3 protein.

Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1

  • Maharjan, Sony;Park, Byoung Kwon;Lee, Su In;Lim, Yoonho;Lee, Keunwook;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.322-327
    • /
    • 2018
  • A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.

A Cyclin D1 (CCND1) Gene Polymorphism Contributes to Susceptibility to Papillary Thyroid Cancer in the Turkish Population

  • Aytekin, Turkan;Aytekin, Alper;Maralcan, Gokturk;Gokalp, M. Avni;Ozen, Dogukan;Borazan, Ersin;Yilmaz, Latif
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7181-7185
    • /
    • 2014
  • Cyclin D1 is an important positive regulator of the G1/S phase of the cell cycle. We investigated the association between the CCND1 G870A polymorphism and susceptibility to papillary thyroid cancer in Turkish people. This study covered 102 patients with papillary thyroid cancer and 174 healthy controls. CCND1 genotyping was determined by the PCR-RFLP method. We found that the A allele frequency was higher in the cases than in the controls (p=0.042). On stratification analysis, papillary thyroid cancer risk was significantly elevated in individuals older than 45 years with the A allele (OR=1.91, 95% CI, 1.09-3.35, p=0.024) and in females with the A allele (OR=1.73, 95% CI, 1.06-2.84, p=0.029), compared to the G allele. According to the subject age, there was an increased papillary thyroid cancer risk for the individuals older than 45 years with the AA genotype (OR=2.28, 95% CI, 1.02-5.13, p=0.046) compared to the AG+GG combined genotypes. In conclusion, it is suggested that the CCND1 G870A polymorphism may contribute to the susceptibility to papillary thyroid cancer, especially in those who were older subjects ($45{\leq}$ years old) and female, in the Turkish population.

Induction of S phase Arrest of the Cell Cycle by Oak Smoke Flavoring (Holyessing) in Human Prostate Carcinoma Cells (인체 전립선 암세포에서 참나무 목초액에 의한 세포주기 S기 arrest 유발에 관한 연구)

  • Park Cheol;Lee Won Ho;Choi Byung Tae;Kim Kyoung Chul;Lee Yong Tae;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1309-1314
    • /
    • 2003
  • We examined the effects of Oak Smoke Flavoring (OSF, Holyessing) on the cell proliferation of DU145 and PC3 human prostate carcinoma cell line. OSF treatment resulted in a concentration-dependent inhibition of the cell viability in both DU145 and PC3 cell lines. The anti-proliferative effects by OSF treatment in DU145 and PC3 cells were associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of S phase of the cell cycle was increased by OSF treatment in a dose-dependent manner. Western blot analysis revealed that cyclin B1 and cdc2 proteins were reduced by OSF treatment in DU145 cells, whereas cyclin A was markedly inhibited in PC3 cells. Furthermore, we observed an increase of Cdk inhibitor p16 and p27 protein, and an inhibition of phosphorylation of pRB by OSF treatment in a dose-dependent manner. The present results indicated that OSF-induced inhibition of human prostate carcinoma cell proliferation is associated with the blockage of S phase progression.