DOI QR코드

DOI QR Code

A Cyclin D1 (CCND1) Gene Polymorphism Contributes to Susceptibility to Papillary Thyroid Cancer in the Turkish Population

  • Aytekin, Turkan (Department of Biology, Faculty of Arts and Sciences, University of Gaziantep) ;
  • Aytekin, Alper (Department of General Surgery, Faculty of Medicine, University of Gaziantep) ;
  • Maralcan, Gokturk (Department of General Surgery, Faculty of Medicine, University of Gaziantep) ;
  • Gokalp, M. Avni (Department of General Surgery, Faculty of Medicine, University of Gaziantep) ;
  • Ozen, Dogukan (Department of Biostatistics, Faculty of Veterinary Medicine, University of Ankara) ;
  • Borazan, Ersin (Department of General Surgery, Faculty of Medicine, University of Gaziantep) ;
  • Yilmaz, Latif (Department of General Surgery, Faculty of Medicine, University of Gaziantep)
  • Published : 2014.09.15

Abstract

Cyclin D1 is an important positive regulator of the G1/S phase of the cell cycle. We investigated the association between the CCND1 G870A polymorphism and susceptibility to papillary thyroid cancer in Turkish people. This study covered 102 patients with papillary thyroid cancer and 174 healthy controls. CCND1 genotyping was determined by the PCR-RFLP method. We found that the A allele frequency was higher in the cases than in the controls (p=0.042). On stratification analysis, papillary thyroid cancer risk was significantly elevated in individuals older than 45 years with the A allele (OR=1.91, 95% CI, 1.09-3.35, p=0.024) and in females with the A allele (OR=1.73, 95% CI, 1.06-2.84, p=0.029), compared to the G allele. According to the subject age, there was an increased papillary thyroid cancer risk for the individuals older than 45 years with the AA genotype (OR=2.28, 95% CI, 1.02-5.13, p=0.046) compared to the AG+GG combined genotypes. In conclusion, it is suggested that the CCND1 G870A polymorphism may contribute to the susceptibility to papillary thyroid cancer, especially in those who were older subjects ($45{\leq}$ years old) and female, in the Turkish population.

Keywords

References

  1. Akkiz H, Bayram S, Bekar A, Akgollu E, Ozdil B (2010). Cyclin D1 G870A polymorphism is associated with an increased risk of hepatocellular carcinoma in the Turkish population: Case-control study. Cancer Epidemiol, 34, 298-302. https://doi.org/10.1016/j.canep.2010.02.011
  2. Betticher DC, Thatcher N, Altermatt HJ, et al (1995). Alternate splicing produces a novel cyclin D1 transcript. Oncogene, 11, 1005-11.
  3. Brown RL, de Souza JA, Cohen EEW (2011). Thyroid Cancer: burden of illness and management of disease. J Cancer, 2, 193-9.
  4. Casson AG, Zheng Z, Evans SC, et al (2005). Cyclin D1 polymorphism (G870A) and risk for esophageal adenocarcinoma. Cancer, 104, 730-9. https://doi.org/10.1002/cncr.21229
  5. Catarino R, Matos A, Pinto D, et al (2005). Increased risk of cervical cancer associated with cyclin D1 gene A870G polymorphism. Cancer Genet Cytogen, 160, 49-54. https://doi.org/10.1016/j.cancergencyto.2004.11.017
  6. Cortessis VK, Siegmund K, Xue S, Ross RK, Yu MC (2003). A case-control study of cyclin D1 CCND1 870A $\rightarrow$ G polymorphism and bladder cancer. Carcinogenesis, 24, 1645-50. https://doi.org/10.1093/carcin/bgg128
  7. Du Y, Han LY, Li DD, et al (2013). Associations between XRCC1 Arg399Gln, Arg194Trp, and Arg280His polymorphism and risk of differentiated thyroid carcinoma: a meta-analysis. Asian Pac J Cancer Prev, 14, 5483-7. https://doi.org/10.7314/APJCP.2013.14.9.5483
  8. Gomes CC, Drummond SN, Guimaraes ALS, et al (2008). P21/WAF1 and cyclin D1 variants and oral squamous cell carcinoma. J Oral Pathol Med, 37, 151-6.
  9. Grieu F, Malaney S, Ward R, Joseph D, Iacopetta B (2003). Lack of association between CCND1 G870A polymorphism and the risk of breast and colorectal cancers. Anticancer Res, 23, 4257-9.
  10. Hall M, Peters G (1996). Genetic alterations of cyclins, cyclindependent kinases, and cdk inhibitors in human cancer. Adv Cancer Res, 68, 67-108. https://doi.org/10.1016/S0065-230X(08)60352-8
  11. Hong Y, Eu KW, Seow-Choen F, Fook-Chong S, Cheah PY (2005). GG genotype of cyclin D1 G870A polymorphism is associated with increased risk and advanced colorectal cancer in patients in Singapore. Eur J Cancer, 41, 1037-44. https://doi.org/10.1016/j.ejca.2005.01.009
  12. Hou X, Wang S, Zhou Y, et al (2005). Cyclin D1 gene polymorphism and susceptibility to childhood acute lymphoblastic leukemia in a Chinese population. Int J Hematol, 82, 206-9. https://doi.org/10.1532/IJH97.A10418
  13. Huang M, Spitz MR, Gu J, et al (2006a). Cyclin D1 gene polymorphism as a risk factor for oral premalignant lesions. Carcinogenesis, 27, 2034-7. https://doi.org/10.1093/carcin/bgl048
  14. Huang WS, Tang R, Lin PY, et al (2006b). Impact of the cyclin D1 A870G polymorphism on susceptibility to sporadic colorectal cancer in Taiwan. Dis Colon Rectum, 49, 602-8. https://doi.org/10.1007/s10350-005-0311-6
  15. Jiang J, Wang J, Suzuki S, et al (2006). Elevated risk of colorectal cancer associated with the AA genotype of the cyclin D1 A870G polymorphism in an Indian population. J Cancer Res Clin Oncol, 132, 193-9. https://doi.org/10.1007/s00432-005-0039-7
  16. Kang S, Kim JW, Park NH, et al (2005). Cyclin D1 polymorphism and the risk of endometrial cancer. Gynecol Oncol, 97, 431-5. https://doi.org/10.1016/j.ygyno.2005.01.023
  17. Knudsen KE (2006). The cyclin D1b splice variant: an old oncogene learns new tricks. Cell Division, 15, 1-12.
  18. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006). Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene, 25, 1620-8. https://doi.org/10.1038/sj.onc.1209371
  19. Li Y, Zhang S, Geng JX, Yu Y (2012). Effects of the cyclin D1 polymorphism on lung cancer risk - a meta-analysis. Asian Pac J Cancer Prev, 13, 2325-8. https://doi.org/10.7314/APJCP.2012.13.5.2325
  20. Liu G, Cescon DW, Zhai R, et al (2010). p53 Arg72Pro, MDM2 T309G and CCND1 G870A polymorphisms are not associated with susceptibility to esophageal adenocarcinoma. Dis Esophagus, 23, 36-9. https://doi.org/10.1111/j.1442-2050.2009.00960.x
  21. Liu W, Zhu E, Wang R, et al (2011). Cyclin D1 gene polymorphism A870G, is associated with an increased risk of salivary gland tumors in the Chinese population. Cancer Epidemiol, 35, 12-7. https://doi.org/10.1016/j.canep.2010.11.001
  22. Matthias C, Branigan K, Jahnke V, et al (1998). Polymorphism within the cyclin D1 gene is associated with prognosis in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res, 4, 2411-8.
  23. Miller SA, Dykes DD and Polesky HS (1998). Simples salting out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res, 16, 1215-9.
  24. Motokura T, Bloom T, Kim HG, et al (1991). A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature, 350, 512-5. https://doi.org/10.1038/350512a0
  25. Ozdemir S, Uludag A, Silan F, et al (2013). Possible roles of the xenobiotic transporter p-glycoproteins encoded by the MDR1 3435 C>T gene polymorphism in differentiated thyroid cancers. Asian Pac J Cancer Prev, 14, 3213-7. https://doi.org/10.7314/APJCP.2013.14.5.3213
  26. Pacini F, DeGroot LJ (2006). Thyroid Neoplasia, Eds DeGroot LJ, Jameson JL. Endocrinologyn (5th ed). Philadelphia, Elsevier Saunders, pp 2147-80.
  27. Porter TR, Richards FM, Houlston RS, et al (2002). Contribution of cyclin d1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer. Oncogene, 21, 1928-33. https://doi.org/10.1038/sj.onc.1205245
  28. Qiuling S, Yuxin Z, Suhua Z, et al (2003). Cyclin D1 gene polymorphism and susceptibility to lung cancer in a Chinese population. Carcinogenesis, 24, 1499-503. https://doi.org/10.1093/carcin/bgg035
  29. Ranjbari N, Almasi S, Mohammadi-asl J, Rahim F (2013). BRAF mutations in Iranian patients with papillary thyroid carcinoma. Asian Pac J Cancer Prev, 14, 2521-3. https://doi.org/10.7314/APJCP.2013.14.4.2521
  30. Sawa H, Ohshima TA, Ukita H, et al (1998). Alternatively spliced forms of cyclin D1 modulate entry into the cell cycle in an inverse manner. Oncogene, 16, 1701-12. https://doi.org/10.1038/sj.onc.1201691
  31. Schlumberger MJ (1998). Papillary and follicular thyroid carcinoma. N Eng J Med, 338, 297-306. https://doi.org/10.1056/NEJM199801293380506
  32. Sherr CJ, Roberts JM (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 9, 1149-63. https://doi.org/10.1101/gad.9.10.1149
  33. Sherr CS (1996). Cancer cell cycles. Science, 274, 1672-7. https://doi.org/10.1126/science.274.5293.1672
  34. Sobti RC, Kaur P, Kaur S, et al (2006). Effect of cyclin D1 (CCND1) polymorphism on susceptibility to lung cancer in a North Indian population. Cancer Genet Cytogen, 170, 108-14. https://doi.org/10.1016/j.cancergencyto.2006.05.017
  35. Sturgis EM, Li G (2009). Molecular epidemiology of papillary thyroid cancer: in search of common genetic associations. Thyroid, 19, 1031-4. https://doi.org/10.1089/thy.2009.1597
  36. Temmim L, Ebraheem K, Baker H, Sinowatz F (2006). Cyclin D1 protein expression in human thyroid gland and thyroid cancer. Anat Histol Embryol, 35, 125-9. https://doi.org/10.1111/j.1439-0264.2005.00648.x
  37. Wang L, Habuchi T, Takahashi T, et al (2002). Cyclin D1 gene polymorphism is associated with an increased risk of urinary bladder cancer. Carcinogenesis, 23, 257-64. https://doi.org/10.1093/carcin/23.2.257
  38. Wang L, Habuchi T, Mitsumori K, et al (2003). Increased risk of prostate cancer associated with AA genotype of cyclin D1 gene A870G polymorphism. Int J Cancer, 103, 116-20. https://doi.org/10.1002/ijc.10793
  39. Wang YX, Li ML, Yu SG, et al (2013). The association between the Survivin A9194G exon polymorphisms and papillary thyroid carcinoma risk in the Han Chinese population. Pathol Res Pract, 209, 151-4. https://doi.org/10.1016/j.prp.2013.01.004
  40. Yu CP, Yu JC, Sun CA, et al (2008). Tumor susceptibility and prognosis of breast cancer associated with the G870A polymorphism of CCND. Breast Cancer Res Treat, 107, 95-102.
  41. Zeybek U, Yaylim I, Ozkan NE, et al (2013). Cyclin D1 gene G870A variants and primary brain tumors. Asian Pac J Cancer Prev, 14, 4101-6. https://doi.org/10.7314/APJCP.2013.14.7.4101
  42. Zhang Q, Song F, Zheng H, et al (2013). Association between single-nucleotide polymorphisms of BRAF and papillary thyroid carcinoma in a Chinese population. Thyroid, 23, 38-44. https://doi.org/10.1089/thy.2012.0228
  43. Zheng Y, Shen H, Sturgis EM, et al (2001). Cyclin D1 polymorphism and risk for squamous cell carcinoma of the head and neck: a case-control study. Carcinogenesis, 22, 1195-9. https://doi.org/10.1093/carcin/22.8.1195

Cited by

  1. CCND1 Splice Variant as A Novel Diagnostic and Predictive Biomarker for Thyroid Cancer vol.10, pp.11, 2018, https://doi.org/10.3390/cancers10110437
  2. Identification of key genes of papillary thyroid cancer using integrated bioinformatics analysis vol.41, pp.10, 2018, https://doi.org/10.1007/s40618-018-0859-3