• Title/Summary/Keyword: cyclic testing

Search Result 285, Processing Time 0.027 seconds

Cyclic Seismic Testing of Concrete-filled U-shaped Steel Beam-to-Steel Column Connections (콘크리트채움 U형 강재보-강재기둥 합성 내진접합부에 대한 주기하중 실험)

  • Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.337-347
    • /
    • 2011
  • In this study, seismic resistance of concrete encased U-shaped steel beam-to-steel H-shaped column connections was evaluated. Three specimens of the beam-to-column connection were tested under cyclic loading. The composite beam was integrated with concrete slab using studs. Re-bars for negative moment were placed in the slab. The primary test parameter was the details of the connections, which are strengthening and weakening strategies for the beam end and the degree of composite action. The depth of the composite beams was 600mm including the slab thickness. The steel beam and the re-bars in the slab were weld-connected to the steel column. For the strengthening strategy, cover plates were weld-connected to the bottom and top flanges of the steel beam. For the weakening strategy, a void using styrofoam box was located inside the core concrete at the potential plastic hinge zone. The test results showed that the fully composite specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity of the beam exceeded 4% rotation angle, which is the requirement for the Special Moment Frame.

Seismic Behaviour of Exterior Joints in Post-Tensioned Flat Plate Systems (포스트 텐션 플랫 플레이트 외부 접합부의 내진 거동)

  • Han, Sang-Whan;Kee, Seong-Hoon;Kang, Tomas H.K.;Cho, Jong;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.595-602
    • /
    • 2006
  • An experimental study was conducted to investigate seismic behaviour of post-tensioned(PT) exterior slab-column connections used for the purpose to resist gravity loads only. For these, 2/3-scale, two PT post-tensioned exterior connections with two different tendon arrangement patterns and one conventional reinforced concrete(RC) exterior connection was tested under quasi-static, uni-directional reversed cyclic loading. During the lateral testing, gravity forces transferred to the column were kept constant to closely simulate a moment to shear ratio of a real building. One of the objectives of this study was to assess the necessity and/or the quantity of bottom bonded reinforcement needed to resist moment reversal which would occur under significant inelastic deformations of the adjacent lateral force resisting systems. The ACI 318 and 352 provisions for structural integrity were applied to provide the bottom reinforcement passing through the column for the specimens. Prior test results were also collected to conduct comparative studies for some design parameters such as the tendon arrangement pattern, the effect of post-tensioning forces and the use of bottom bonded reinforcement. Consequently, the impact of tendon arrangement on the seismic performance of the PT connection, that is lateral drift capacity and ductility, dissipated energy and failure mechanism, was considerable. Moreover, test results showed that the amount of bottom reinforcement specified by ACI 352. 1R-89 was sufficient for resisting positive moments arising from moment reversal under reversed cyclic loads. Shear strength of the tested specimens was more accurately predicted by the shear strength equation(ACI 318) considering the average compressive stress over the concrete($f_{pc}$) due to post-tensioning forces than that without considering $f_{pc}$.

Cyclic Load Testing for Weak Axis Joints Connected with SRC Column and RC Beams (SRC기둥-RC보 약축방향 접합부 상세의 구조성능에 대한 실험적 연구)

  • Moon, Jeong-Ho;Lim, Jae-Hyung;Oh, Kyung-Hwan;Kim, Sung-Ho;Lee, Kang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • An objective of this study is to evaluate the structural performance of the weak axis SRC column-RC beam joints by experiments. Although one of common joint types is the connection with standard hooks, it has been required to examine its safety and to settle problems of the joint among practical engineers. Specimen types are classified into two categories, namely the type of standard hook and the type of shape improvement. The first one is consisted of three specimens which are reference type, development length modification type, and development length supplement type. Three specimens for shape improvement were made with variations on the arrangement of longitudinal reinforcements and the development length. Test results based on cyclic loadings were discussed with load-deflection curves, maximum strengths, strength degradations beyond the maximum. It was found that the standard hook types showed premature failures and consequent strength degradations due to splitting of joint concrete. However, satisfactory performance was obtained with the shape improvement type with wing-plate welding. No premature failures and strength degradations were detected with the specimens.

Cyclic Lond Testing for Strong Axis Joints Connected with SRC Column and RC Beams (SRC기둥-RC보 강축 접합부 상세의 구조성능 평가)

  • Moon, Jeong-Ho;Lee, Kang-Min;Lim, Jae-Hyung;Oh, Kyung-Hwan;Kim, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2007
  • The objective of this research is to provide better knowledge on the behavior of strong axis SRC column-RC beam joint, supported by experimental results, that can be broadly applicable to many structures. For this purpose, firstly literature reviews and field survey were made to classify the most commonly used for these types of joints. Then, experimental program was designed and performed including 6 SRC column-RC beam joint specimens designed with various joint details. Using the experimental results obtained from the quasi-static cyclic tests, structural performances of the joints such as hysteretic curves, maximum strength capacities, strength degradation beyond the maximum strength, ductilities, and energy dissipation capacities were investigated. Test results showed that specimens with wide beam shape (RCW-P, RCW-W, RCW-F) and T beam shape (RCT-W) showed better structural performances than the bracket type specimens (HBR-L, HBR-S). These specimens also revealed to have higher strength capacities than the nominal design strength. However, H beam bracket type specimens (HBR-L, HBR-S) need further study both analytically and experimentally to verify the reason for unexpected structural performances.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

A Simple Evaluation Method for Shear Strength Decreasing with Increasing Number of Cyclic Loading (반복하중 증가에 따라 감소하는 전단강도의 간이 평가법)

  • Song, Byungwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • Earthquake is one of the factors to affect the stability of geotechnical structures. Numerous past earthquakes have shown that earthquakes have taught that damage of soil structures could occur on fine soils as well as coarse soils. For that reason, earthquake-induced decreasing tendency for strength on both coarse and fine soils has been investigated using direct simple shear (DSS) tests in laboratory. Based on the testing results the decreasing tendency for strength on coarse and fine soils is clearly identified in terms of the concept of volume decrease potential and plasticity index, respectively. Most of the soils except the weathered soil have shown similar reduction tendency of strength with the increasing number of cycles. Liquefaction strength of coarse and fine soils appears to decrease with the increment of volume decrease potential and the decrement of plasticity index, respectively. Reduction of strength on the weathered soil is particularly remarkable rather than others, which might be owing to the collapse phenomenon. From the DSS test results for soils, proposed is a simple method to evaluate strength decrement with the increasing number of cycles, and it can help estimate decrement of strength with the number of cycles easily.

  • PDF

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF

Application of Acoustic Emission for Assessing Deterioration in Reinforced Concrete Beams (철근 콘크리트 빔의 노화도 평가를 위한 음향방출 기술의 응용)

  • Yoon, Dong-Jin;Park, Phi-Lip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel. Concrete beams were prepared to isolate the damage mechanisms by using plain, notched-plain, reinforced, and corroded-reinforced specimens. The beams were tested using four-point cyclic step-loading. The AE response was analyzed to obtain key parameters such as the time history of AE events, the total number and rate of AE events, and the characteristic features of the waveform. Initial analysis of the AE signal has shown that a clear difference in the AE response is observed depending on the source of the damage. The Felicity ratio exhibited a correlation with the overall damage level, while the number of AE events during unloading can be an effective criterion to estimate the level of corrosion distress in reinforced concrete structures. Consequently, AE measurement characterization appears to provide a promising approach for estimating the level of deterioration in reinforced concrete structure.

  • PDF

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection Type (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향에 관한 연구)

  • Lee, Cheol-Ho;Jeon, Sang-Woo;Kim, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This paper presents test results on eight reduced beam section(RBS) steel moment connections. The testing program addressed bolted versus welded web connection and panel zone(PZ) strength as key variables, Specimens with medium PZ strength were designed to promote energy dissipation from both PZ and RBS regions such that the requirement for expensive doublet plates could be reduced. Both strong and medium PZ specimens with a welded web connection were able to provide satisfactory connection rotation capacity for special moment-resisting frames. On the other hand, specimens with a bolted web connection performed poorly due to premature brittle fracture of the beam flange of the weld access hole. If fracture within the beam flange groove weld was avoided using quality welding, the fracture tended to move into the beam flange base metal of the weld access hole. Plausible explanation of a higher incidence of base metal fracture in bolted web specimens was presented. The measured strain data confirmed that the classical beam theory dose not provide reliable shear transfer prediction in the connection. The practice of providing web bolts uniformly along the beam depth was brought into question. Criteria for a balanced PZ strength improves the plastic rotation capacity while reduces the amount of beam distortion ore also proposed.

AE Characteristics of Fatigue Crack Opening and Closure in Structural Aluminum Alloy (구조용 알루미늄 합금에서의 피로균열 열림 및 닫힘 시 AE 발생특성 연구)

  • Jeong, Jung-Chae;Park, Phi-Lip;Kim, Ki-Bok;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.155-169
    • /
    • 2002
  • The objective of this study was to investigate the effect of crack opening and closure in the AE activities during fatigue test. Laboratory experiment using various materials and test conditions were carried out to identify AE characteristics of fatigue crack propagation. Compact tension specimens of 2024-T4 and 6061-T6 aluminum alloy were prepared for fatigue test. AE activities were analyzed based on the phase of the loading cycle. Generally, most of AE were generated when the crack begins' opening and the crack closes fully, whereas a few in the pull opening of the crack. Also AE activity in the peak loading of cycle was different with each specimen. However, in the same material, AE activity was not affected by the change of cyclic frequency (0.1, 0.2, 1.0Hz). It was found that AE activities during crack opening and closure depend on material properties such as micro-structure, tensile strength and yield strength.