• Title/Summary/Keyword: cyclic shear test

Search Result 428, Processing Time 0.026 seconds

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

An Experimental Study on the Behavior of Exterior Beam-Column Joints with Steel Fiber Reinforced High Strength Concrete Subjected to Cyclic Loads (반복하중을 받는 강섬유보강 고강도 콘크리트 외측보-기둥 접합부의 거동에 관한 실험적 연구)

  • 한형섭;김명성;박인철;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.565-568
    • /
    • 1999
  • The objective of this study is to investigate the hysteretic behaviors of exterior beam-column joints with high strength concrete (f'c≒1000kg/$\textrm{cm}^2$) subjected to cyclic loads. Four exterior subassemblages scaled down about 60% were tested, whose variables were with/without shear reinforcements and with/without slab and spandrel beams. Hoop bars and hooked steel fibers were used as the shear reinforcements. The test results showed that using hooked steel fiber reinforced concrete with volume ratio 1.5% at beam-column joints was very effective to resist shear stress due to cyclic loads.

  • PDF

Seismic performance of composite plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica;De Matteis, Gianfranco
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.19-36
    • /
    • 2019
  • Cyclic behaviour of composite (steel-concrete) plate shear walls (CPSW) with variable column flexural stiffness is experimentally and numerically investigated. The investigation included design, fabrication and testing of three pairs of one-bay one-storey CPSW specimens. The reference specimen pair was designed in way that its column flexural stiffness corresponds to the value required by the design codes, while within the other two specimen pairs column flexural stiffness was reduced by 18% and 36%, respectively. Specimens were subjected to quasi-static cyclic tests. Obtained results indicate that column flexural stiffness reduction in CPSW does not have negative impact on the overall behaviour allowing for satisfactory performance for up to 4% storey drift ratio while also enabling inelastic buckling of the infill steel plate. Additionally, in comparison to similar steel plate shear wall (SPSW) specimens, column "pull-in" deformations are less pronounced within CPSW specimens. Therefore, the results indicate that prescribed minimal column flexural stiffness value used for CPSW might be conservative, and can additionally be reduced when compared to the prescribed value for SPSWs. Furthermore, finite element (FE) pushover simulations were conducted using shell and solid elements. Such FE models can adequately simulate cyclic behaviour of CPSW and as such could be further used for numerical parametric analyses. It is necessary to mention that the implemented pushover FE models were not able to adequately reproduce column "pull-in" deformation and that further development of FE simulations is required where cyclic loading of the shear walls needs to be simulated.

Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests (CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석)

  • Herrera, Diego;Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.65-75
    • /
    • 2024
  • This study investigates liquefaction-induced settlement through strain-controlled tests using a cyclic direct simple shear device on clean sand specimens. By focusing on the accumulated shear strain, soil density, sample preparation method, and cyclic waveshape, this study attempts to enhance the understanding of soil behavior under seismic loading and its further deformation. Results from tests conducted on remolded samples reveal insights into excess pore water pressure development and post-liquefaction volumetric strain behavior, with denser samples exhibiting lower volumetric strains than looser samples. Similarly, the correlation between the frequency and amplitude variations of the wave and volumetric strain highlights the importance of wave characteristics in soil response, with shear strain amplitude changes, varying the volumetric strain response after reconsolidation. In addition, samples prepared under moist conditions exhibit less volumetric strain than dry-reconstituted samples. Overall, the findings of this study are expected to contribute to predictive models to evaluate liquefaction-induced settlement.

Dynamic Deformation Characteristics of Joomunjin Standard Sand Using Cyclic Triaxial Test (반복삼축압축시험을 이용한 주문진 표준사의 동적변형특성 분석)

  • Kim, You-Seong;Ko, Hyoung-Woo;Kim, Jae-Hong;Lee, Jin-Gwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.53-64
    • /
    • 2012
  • In this study, the modified cyclic triaxial tests with Joomunjin standard sand are performed for dynamic deformation characteristics, such as Young's moduli and damping ratio. The cyclic triaxial test is equipped with Local Displacement Transducer (LDT) on the outside of a cell which has a range from $10^{-4}$ to $10^{-1}$ of shear strains, ${\gamma}$ (%), instead of conventional cyclic triaxial test which has linear variable displacement transducer (LVDT) with low precision. With the small strain control, tests were carried out at various loading rates, void ratios, and effective confining pressures. Based on the test results, such as dynamic deformation characteristics, shear modulus, and damping ratio, it is found that the test can measure more range of medium strains (0.02-0.2%) than results obtained from conventional test (resonant column test). For the medium strain range, dynamic deformation characteristics investigated by the cyclic triaxial test are also different from those predicted by nonlinear model in conventional test.

Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips

  • Hawileh, Rami A.;Abdalla, Jamal A.;Tanarslan, Murat H.;Naser, Mohannad Z.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.193-206
    • /
    • 2011
  • The use of Carbon Fiber Reinforced Polymers (CFRP) to strengthen reinforced concrete beams under bending and shear has gained rapid growth in recent years. The performance of shear strengthened beams with externally bonded CFRP laminate or fabric strips is raising many concerns when the beam is loaded under cyclic loading. Such concerns warrant experimental, analytical and numerical investigation of such beams under cyclic loading. To date, limited investigations have been carried out to address this concern. This paper presents a numerical investigation by developing a nonlinear finite element (FE) model to study the response of a cantilever reinforced concrete T-beam strengthened in shear with side bonded CFRP fabric strips and subjected to cyclic loading. A detailed 3D nonlinear finite element model that takes into account the orthotropic nature of the polymer's fibers is developed. In order to simulate the bond between the CFRP sheets and concrete, a layer having the material properties of the adhesive epoxy resin is introduced in the model as an interface between the CFRP sheets and concrete surface. Appropriate numerical modeling strategies were used and the response envelope and the load-displacement hysteresis loops of the FE model were compared with the experimental response at all stages of the cyclic loading. It is observed that the responses of the FE beam model are in good agreement with those of the experimental test. A parametric study was conducted using the validated FE model to investigate the effect of spacing between CFRP sheets, number of CFRP layers, and fiber orientation on the overall performance of the T-beam. It is concluded that successful FE modeling provides a practical and economical tool to investigate the behavior of such strengthened beams when subjected to cyclic loading.

Experimental Study on the Effect of Particle Size Distribution of Soil to the Liquefaction Resistance Strength (입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구)

  • Choi, Mun-Gyu;Seo, Kyung-Bum;Park, Seong-Yong;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1126-1133
    • /
    • 2005
  • The effects of mean particle size and uniformity coefficient of dredged soils to the liquefaction resistance strength and dynamic characteristics are experimentally studied in this paper. Representative 4 mean particle sizes and 3 uniformity coefficients were selected and 12 representative particle size distribution curves which have different mean particle sizes and uniformity coefficients, were artificially manufactured using the real dredged river soil. Cyclic triaxial tests and torsional shear tests were carried out to analyze the effect of mean particle size and uniformity coefficient to the liquefaction resistance strength and dynamic characteristics of soils.

  • PDF

Structural Behavior of RC Columns with Mechanically Anchored Crossties under Cyclic Loading (기계적 정착된 전단보강근을 가진 RC 기둥의 구조적 거동)

  • Lee, Sung-Ho;Chun, Sung-Chul;Oh, Bo-Hwan;Nah, Hwan-Sean;Kim, Sang-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.59-62
    • /
    • 2005
  • Seven columns laterally reinforced with either mechanically anchored crossties or conventional crossties under cyclic loading are tested. 4 columns are specimens for flexural strength and 3 columns are for shear strength. Main variable is anchorage types of crossties. Conventional hooks, 180$^{\circ}$ standard hook-mechanical anchorage and all mechanical anchorage type are used. The specimens are tested under 10$\%$ axial load of nominal axial capacity of the columns combined with increasing lateral load. From the flexure test, it is found that columns with mechanical anchorages exhibit superior performance in terms of ductility and energy dissipation. The crossties with mechanical anchorages reduce buckling length of longitudinal rebar. From the shear test, it is found that. 3 specimens exhibit almost the same strength, displacement, and shear failure mode at ductility factor =2.

  • PDF

Behavior of headed shear stud connectors subjected to cyclic loading

  • Ding, Fa-xing;Yin, Guo-an;Wang, Hai-bo;Wang, Liping;Guo, Qiang
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.705-716
    • /
    • 2017
  • The objective of this study is to investigate the actual behavior of studs in structures under earthquake load through laboratory tests and numerical simulation. A test program including eighteen specimens was devised with consideration of different concrete strengths and stud diameters. Six of specimens were subjected to monotonically increasing loading while the others were subjected to cyclic loading. Mechanical behavior including the failure mechanism, load-slip relationship, stiffness degradation, energy dissipation and the damage accumulation was obtained from the test results. An accurate numerical model based on the ABAQUS software was developed and validated against the test results. The results obtained from the finite element (FE) model matched well with the experimental results. Furthermore, based on the experimental and numerical data, the design formulas for expressing the skeleton curve were proposed and the simplified hysteretic model of load versus displacement was then established. It is demonstrated that the proposed formulas and simplified hysteretic model have a good match with the test results.

Centrifuge Test and Its Numerical Modeling for Reliquefaction (재액상화에 관한 원심모형실험과 수치해석)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.89-98
    • /
    • 2006
  • In this paper the behavior of saturated sand deposits where liquefaction occurred before is studied for successive earthquakes. The relationship between past pore pressure generation and reliquefaction resistance is examined by using cyclic direct simple shear tests. If the soil sample in direct simple shear produced nearly 90% of excess pore pressure during first time loading, its liquefaction resistance increased during following cyclic loading after consolidation. However, a fully liquefied soil during first time loading has a densely packed condition but shows less liquefaction resistance for the following cyclic loading. UBCSAND model that can account for pore pressure change and stiffness loss of soil during shaking is used to analyze the centrifuge test simulating reliquefaction. The pore pressure rise during first time cyclic loading controls liquefaction resistance. The measurements from reliquefaction centrifuge test are compared with numerical predictions. By considering frequent earthquakes having occurred at the Southern Korea near Japan, such effective stress approach is necessary for reliquefaction study.