• Title/Summary/Keyword: cutting time

Search Result 1,397, Processing Time 0.025 seconds

Studies on the Seed Production and Soiling Utilization of Italian Ryegrass on Paddy Field (답리작 이탈리안 라이그라스의 생육도중 청예이용이 종자생산에 미치는 영향)

  • 채재석;김영두;박태일;박호기;장영선
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.2
    • /
    • pp.124-131
    • /
    • 1995
  • In order to find out optimum seed production date according to different defoliation and flooding period of Italian ryegrass, this studies with Tetrone were canied out on the experimental field of Honam Crop Experiment Station from 1986 to 1988. Treatments included cutting date of Nov. 20 and Apr. 10 and flooding period of 5-25 days. In soil after experiment, organic matter, phosphate and silicate content increased, but potassium content decreased 0.16% than that before experiment. Heading and maturing date of Nov. 20 cutting were same with those of non cutting, those of Apr. 10 cutting lates 6 days to heading date and 2 days to maturing date. Plant height and culm length of Nov. 20 cutting were sirniller to those of non cutting, those of Apr. 10 cutting were shorter and panicle length have no difference between non cutting and cutting. Lodging of cutting treatment was reduced than that of non cutting. Lodgin was increased as flooding period was long, also loding of all treatment occured at 30 days after heading. Two cutting times of Nov. 20 and Apr. 10 have the most fresh yield, while non cutting have the most dry matter yield. Optimun seed productin date was considered to suitable when 35 days after heading (Jun. 14), at this time, seed production was 1,640 to 2,640 kg/ha. Also if flooding j u r y have, seed production was good between 10 days and 15 days after flooding.

  • PDF

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.

A Study for Cutting Resistance of TiN Coated Tools (TiN 코팅 공구의 절삭저항에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.87-95
    • /
    • 2000
  • By using AIP(Arc Ion Plating) of a physical vapor deposition for the first time in Korea a ceramic tool whose surface is coated single layeredly with TiN is developed. In addition cutting resistance appearing in the process of finishing cut of hardened carbon tool steel STC3 is studied. The principal and radial components of cutting resistance in those cutting conditions appear to be the same or similar and the feed component is relatively small. The feed component is found to be in proportion to cutting width and the radial component in proportion to cutting thickness. Owing to coating the cutting resistance of a TiN coated ceramic tool increas-es compared with that of a general ceramic tool.

  • PDF

Chatter Prediction in Endmilling Using Dynamic Cutting Force Modeling (엔드밀링에서의 동절삭력 모델을 이용한 채터예측)

  • Hwang , Cheol-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.104-115
    • /
    • 1999
  • Cutting process, in general, is a closed-loop system consisting of structural dynamics and cutting dynamics, with the cutting forces and the relative displacements between tool and workpiece being the associated variables. There have been a number of works on modeling the cutting process of endmilling, most of which assumed that either one of the tool or workpiece be negligible in tis displacement. In this paper, the relative displacement between tool and workpiece was considered. The proposed model used experimental modal analysis for structural dynamics and an instantaneous uncut chip thickness model for cutting dynamics. Simulation of the model, a time varying cutting system, was performed using 4th order Runge-Kutta method. Subsequent simulation results were utilized to predict chatter over a variety of experiments in slotting operation, showing good agreement.

  • PDF

Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning (고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

Analysis of the Effects of Cutting Force and Surface Roughness in the Cutting Conditions of Plasma Source Ion Implantation Tools (플라즈마 이온주입 공구의 가공조건이 절삭력과 표면 거칠기에 미치는 영향 분석)

  • Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.755-760
    • /
    • 2012
  • In this study, three dimensional cutting force components and surface roughness appeared in high speed cutting by using tungsten carbide endmill tools implanted ion or not found mutual relations through several analysis of statistical dispersion. It is showed that cutting force(Fx) is affect with spindle speed and feed rate, cutting force(Fy) is affect with spindle speed and ion implantation time and cutting force(Fz) is affect with feed rate in interaction through the statistical method of ANOVA of cutting force and surface roughness, it is analyzed that it is affected of spindle speed and feed rate in surface roughness.

A Study on In-Porcess Sensor for Recognizing Cutting Conditions (복합가능형 절삭상태인식용 In-Process Sensor에 관한 연구)

  • Chung, Eui-Sik;Kim, Yeong-Dae;NamGung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.47-57
    • /
    • 1990
  • In-process recognition of the cutting states is one of the very important technologies to increase the reliability of mordern machining process. In this study, practical methods which use the dynamic component of the cutting force are proposed to recognize cutting states (i.e. chip formation, tool wear, surface roughness) in turning process. The signal processing method developed in this study is efficient to measure the maximum amplitude of the dynamic component of cutting force which is closely related to the chip breaking (cut-off frequency : 80-500 Hz) and the approximately natural frequency of cutting tool (5, 000-8, 000 Hz). It can be clarified that the monitoring of the maximum apmlitude in the dynamic component of the cutting force enables the state of chip formation which chips can be easily hancled and the inferiority state of the machined surface to be recognized. The microcomputer in-process tool wear monitor- ing system introduced in this paper can detect the determination of the time to change cutting tool.

  • PDF

Specific Cutting Force Coefficients Modeling of End Milling by Using Neural Network (신경회로망을 이용한 엔드밀 가공의 비절삭력계수 모델링)

  • Lee, Sin-Young;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.979-987
    • /
    • 1999
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on, and cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling process for various cutting conditions, a mathematical model is important and this model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging farces of cutting tests. In this paper, the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in teaming stage as the omitted numbers of experimental data increases the average errors increase.

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

A Study on the Improvement of Cutting Precision by the Ultrasonic Vibration Cutting (초음파 진동 절삭에 의한 가공정도 향상에 관한 연구)

  • Kang, Jong-Pyo;Kim, Byong-Hwa;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.69-77
    • /
    • 1991
  • The ultimate target of machining process is to get both precision and productivity simultaneously. To obtain these effects, many kinds of machining methods have been considered and various research effort has been made for a long time. Ultrasonic vibration cutting method is one of these methods. When the ultrasonic vibration is applied on the workpiece or the tool, the cutting tool makes periodical contact with workpiece due to vibration. The cutting is performed by vibrating impact force while the cutting tool contacts the workpiece, and it makes the displacement of both the tool and workpiece minimum in three force component (principal, axial, radial force) direction during the cutting process. So the cutting precision is better than conventional cutting method. The main results that obtained by the expriments of ultrasonic vibration cutting are as follows; 1. The value of roundness is about 1.4 ~ 2.5 [${\mu}m$] and this value is three or four times less than that of conventional cutting. 2. The value of surface roughness is about 1.2~2.2 [${\mu}m$] and this value is the two or three times less than that of conventional cutting.

  • PDF