• Title/Summary/Keyword: cut-off temperature

Search Result 140, Processing Time 0.035 seconds

A Study for the Fire Analysis and Igniting Cause of Freezing Protection Heating Cables (동파방지열선 화재 흔적분석과 발화원인 연구)

  • Lee, Jung Il;Ha, Kag Cheon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • There have been a number of major fatal fire accidents in Korea recently. The number of fires in 2017 were 44,178, which is not only increasing number of fires but also increasing in casualties. Particularly, the fire at Jecheon Sports Center, which suffered many casualties, is expected to have a huge impact. The cause of the fire has not been determined yet, but heat waves on the ceiling have also been pointed out. As such, the copper heating waves, which are used as a preventive measure against damage of pipes due to freezing of pipes, etc., always have a fire hazard. To determine the possibility of a flame-resistant heated fire, a positive electric cable product was used to artificially ignite and analyze the results. In case of a short circuit, the external covering of the positive electric cable is damaged, but not short circuit unless the heating material surrounding the wire is damaged. Due to the characteristics of heating cable for preventing copper waves, the chances of insulation becoming more severe due to moisture and temperature changes are higher than normal wires. If the internal heating system is carbonized by insulating deterioration without damage to the outer coating, it is likely to cause trekking, to form a winding loop in the heating materials, and to cause short circuit in the heated materials. For the positive temperature line, if the middle is shorted, the current continues to flow to the short circuit unless the breaker disconnects. Consequently, a heated fire that does not cut off the power immediately may leave multiple marks or cuts.

Characteristics of the Cell Wall Lytic Enzyme of Anabaena cylindrica from Penicillium oxalicum(HCLF-34) (Penicillium oxalicum(HCLF-34)으로부터 분비되는 Anabaena cylindrica 세포벽 분해효소의 특성)

  • 현성희;최영길
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.231-236
    • /
    • 1999
  • The fuugus(Penicil1ium oralicum; HCLF-34) secreted the cyanobacteria lytic enzyme which had a molecular weight of about 22 kDa, a optimum temperature of $20^{\circ}C$, a optimum pH of 3.5, and a temperature-stable up to $50^{\circ}C$. The chemical ions such as sodium, potassium, barium, magnesium. and mangan ions appeared positive activity. but calcium, iron, copper ions, EDTA, and PMSF displayed negative activity: this results were the same as the characterilics of other cell wall lytic enzymes. This extracellular enzyme showed lytic aclivily against SDS-insoluble peptidoglycan of Anabaenrr cylinrlrica. The cell wall lylic enzyme of Penicilliurn oxalicum(HCLF-34) seemed to be glycosidase-like enzyme in the fact that ihe concentration of rcducing sugar was increased when the peptidoglycan of Anabaena qlinrlricn md Micrococcus luteus reacted with this enzyme

  • PDF

An Analysis on Effects of Passive Heating of Low Energy House Using Heat in Greenhouse (온실의 열을 이용한 저에너지하우스의 패시브 난방 효과 분석)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.103-109
    • /
    • 2016
  • Purpose: In Korea, to reduce greenhouse gas emissions, energy performance standard of buildings is being reinforced with goals of Passive House until 2017 and Zero Energy House until 2025 in order to reduce emissions from buildings which constitute a quarter of greenhouse gas emissions. In order to achieve the target of Zero Energy House, it is certainly necessary to develop renewable energy that can replace cooling and heating energy occupying a significant amount of building energy consumption after increasing the energy performance firstly. Method: In this study, effects of heat in greenhouse heated by solar heating on indoor heating were analyzed by constructing a greenhouse in front of the Low Energy Building. Result: As a result, indoor temperature was increased by peak average $27.8^{\circ}C$, peak average $6.8^{\circ}C$ was increased from when heat in greenhouse has not been used for heating and indoor surface temperature was increased by average $5.1^{\circ}C$. It shows it can be possible to use heat in greenhouse for heating, if the heating effects can be same as this experimental result because Energy Saving-Type buildings such as Low Energy House or Passive House keep from 18 to $20^{\circ}C$ in winter. Therefore, even if energy supply is cut off by disasters and other reasons, cooling and heating can be possible for some time.

Optimization of Thermal-alkaline Pre-treatment for Anaerobic Digestion of Flotation Scum in Food Waste Leachate Using Box-Behnken Design and Response Surface Methodology (Box-Behnken 및 반응표면 분석법을 이용한 음식물류 폐수 부상 스컴의 혐기성 소화를 위한 열-알칼리 전처리 최적화)

  • Lee, Dong-Young;Choi, Jae-Min;Kim, Jung-Kwang;Han, Sun-Kee;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.183-192
    • /
    • 2015
  • Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL $CH_4/g$ VS was estimated under the optimum conditions at $62.0^{\circ}C$, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.

Development of Mathematical Model to Predict Specific Wear Rates of Graphite Seal (흑연 씰의 비마모율 예측에 관한 수학적 모델 개발)

  • Kim, Yeonwook;Kim, Jaehoon;Park, Sunghan;Lee, Hwangyu;Kim, Beomkeun;Lee, Seongbeom;Kwak, Jae Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.67-73
    • /
    • 2014
  • The dry sliding wear behavior of graphite that is used as the sealing material to cut off hot gas was evaluated as a function of applied load, sliding speed and temperature. The reciprocating wear tests were carried out at room temperature and elevated temperatures. An attempt has been made to develop a mathematical model by response surface methodology and an analysis of variance technique was applied to confirm the validity of the developed model. Also, the wear mechanism was compared through the observation of the worn surface by SEM analysis.

Design of an Interface System IC for Automobile ABS/TCS (자동차용 ABS/TCS 인터페이스 시스템 IC의 설계)

  • Lee, Sung-Pil;Kim, Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.195-200
    • /
    • 2006
  • The conventional discrete circuit for ABS/TCS system was examined and the problems of the system were analyzed by computer simulation. In order to improve the performance of ABS/TCS system, interface IC which has error compensation, comparator and under voltage lock-out circuit was designed and their electrical characteristics were investigated. The voltage regulator was included to compensate the temperature variation in the temperature range from $-20^{\circ}C$ to $120^{\circ}C$ for automobile environment. ABS and brake signal were separated using the duty factor of same frequency or different frequencies. UVLO(Under Voltage Lock-Out) circuit and constant current circuit were applied for the elimination of noise, and protection circuit was applied to cut the excess current off. Layout for IC fabrication was designed to enhance the electrical performance of ABS/TCS system. Layout was consisted of 11 masks, arrayed effectively 8 pads to reduce the current loss. We can see that the result of layout simulation was better than the result of bread board.

  • PDF

Preparation and Bioevaluation of 177Lu-labelled Anti-CD44 for Radioimmunotherapy of Colon Cancer

  • Lee, SoYoung;Hong, YoungDon;Jung, SungHee;Choi, SunJu
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.187-192
    • /
    • 2015
  • CD44 is a particular adhesion molecule and facilitates both cell-cell and cell-matrix interactions. In particular, splice variants of CD44 are particularly overexpressed in a large number of malignancies and carcinomas. In this study, the $^{177}Lu$-labelled CD44 targeting antibody was prepared and bioevaluated in vitro and in vivo. Anti-CD44 was immunoconjugated with the equivalent molar ratio of cysteine-based DTPA-NCS and radioimmunoconjugated with $^{177}Lu$ at room temperature within 15 minutes. The stability was tested in human serum. An in vitro study was carried out in HT-29 human colon cancer cell lines. For the biodistribution study $^{177}Lu$-labelled anti-CD44 was injected in xenograft mice. Anti-CD44 was immunoconjugated with cysteine-based DTPA-NCS and purified by a centricon filter system having a molecular cut-off of 50 kDa. Radioimmunoconjugation with $^{177}Lu$ was reacted for 15 min at room temperature. The radiolabeling yield was >99%, and it was stable in human serum without any fragmentation or degradation. The radioimmunoconjugate showed a high binding affinity on HT-29 colon cancer cell surfaces. In a biodistribution study, the tumor-to-blood ratio of the radioimmunoconjugate was 43 : 1 at 1 day post injection (p.i) in human colon cancer bearing mice. The anti-CD44 monoclonal antibody for the targeting of colon cancer was effectively radioimmunoconjugated with $^{177}Lu$. The in vitro high immunoactivity of this radioimmunoconjugate was determined by a cell binding assay. In addition, the antibody's tumor targeting ability was demonstrated with very high uptake in tumors. This radioimmunoconjugate is applicable to therapy in human colon cancer with highly expressed CD44.

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

Study on Degradation Characteristic of Plastic Artwork for Conservation (플라스틱 작품 보존을 위한 열화 특성 연구)

  • Yu, Ji A;Cho, Ha Jin;Han, Ye Bin;Lee, Hyun Ju;Lee, Sang Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Plastic artwork can be appeared crack, change of color and whitening event by various environment conditions. A large scale plastic artwork often exhibits in outside it will be directly degraded by physical and chemical degradation factor such as strong sunlight, high humidity and rainfall. We should know degradation characteristic of plastics to prevent these damages. In this study, we studied degradation characteristic of plastics (5 types of wide use plastics; polypropylene, polystyrene, polyethylene, polyvinyl chloride, polyurethane) depending on various artificial degradation conditions such as high temperature, ultraviolet and these complex conditions (high temperature and ultraviolet). As a result, polypropylene, polystyrene and polyethylene show the most visible change especially polypropylene, polystyrene. Polypropylene didn't show a great change degree of tensile strength and contact angle, on the other hand polystyrene did. Polypropylene and polystyrene weakened by photo degradation, polyvinyl chloride and polyurethane had relatively good light stability. Also the high temperature and complex conditions were most degradation characteristic. High temperature worked for degradation catalyst because its energy can not enough worked for cut off binding energy of plastics while ultraviolet condition effected as directly degradation condition. Though following results, we expect it can be applied to investigation of degradation factor depending on plastic artwork materials and basic result of plastic artworks conservation.

Production of Maltopentaose and Biochemical Characterization of Maltopentaose-Forming Amylase

  • Kim, Young-Min;Ryu, Hwa-Ja;Lee, Sun-Ok;Seo, Eun-Seong;Lee, So-Young;Yoo, Sun-Kyun;Cho, Dong-Lyun;Kim, Do-Man;Kimura, Atsuo;Chiba, Seiya;Lee, Jin-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.636-643
    • /
    • 2001
  • Bacillus sp. AIR-5, a strain from soil, produced an extracellular maltopentaose-forming amylase from amylose and soluble starch. This bacterium produced 8.9 g/l of maltopentaose from 40 g/l of soluble starch in a batch fermentation and the maltopentaose made up 90 % of the maltooligosaccharides produced (from maltose to maltoheptaose). The culture supernatant was concentrated using a 30 K molecular weight cut-off membrane and purified by DEAE-Cellulose and Sephadex G-150 column chromatographies. The purified protein showed one band on a native-PAGE and its molecular mass was estimated as 250 kDa. The 250-kDa protein was composed of tetramers of a 63-kDa protein. the isoelectric point of the purified protein was pH 6.9, and the optimum temperature for the enzyme activity was $45^{\circ}C$. The enzyme was quickly inactivated above $55^{\circ}C$, and showed a maximum activity at pH 8.5 and over 90% stability between a pH of 6 to 10. The putative N-terminal amino acid sequence of AIR-5 amylase, ATINNGTLMQYFEWYVPNDG, showed a 96% sequence similarity with that of BLA, a general liquefying amylase.

  • PDF