• Title/Summary/Keyword: curved steel plate

Search Result 48, Processing Time 0.028 seconds

Simulation of Curved Surface Forming of Steel Plate by Induction Heating (유도 가열을 이용한 강판의 곡면 성형 시뮬레이션)

  • Ryu, Hyun-Su;Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4381-4387
    • /
    • 2015
  • Ship hull is a compound curved shape and most of shipyards have been using gas heating method for the surface forming of steel plate. This traditional forming process have problems such as difficulties in heat input control and poor working conditions due to loud noise and air contamination. Recently, researches on automatic hull forming system have been conducted using high frequency induction heating method which have good control ability and favorable working environment. In this study, the induction heating simulation system for curved surface forming of steel plate was developed and induction heating experiments were performed. Based on the results of this study, efficient induction heating coil design and optimal heating conditions for the automatic hull forming system can be obtained.

On the Effect of Plate Curvature on Welding Deformation (용접변형에의 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung;Lee, Jin-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • A simplified finite element analysis has been used to predict the weld-induced deformation to bead-on-plate welding of steel plates having curvatures in the welding direction. In this study, the equivalent loading method based on inherent strain was used to investigate the effect of longitudinal curvature on the weld-induced deformation of curved plates. Equivalent loads were derived from the inherent strain distribution around the weld line, and the loads were used for linear finite element analyses. These kinds of numerical simulations can, of course, be performed by using the rigorous thermalelastic-plastic analysis method. This approach is not, however, practical for use in weld-induced deformation analysis of large and complex structures, such as ship structures, in view of computing time and cost. The present equivalent load approach has been applied to several plate models having curvatures in the welding direction, and the results are compared with those obtained by thermal-elastic-plastic analysis and also with those obtained by the other simplified method found in reference. As far as the present results are concerned, the weld-induced deformation of curved plates can be accurately predicted by the method presented in this paper.

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.

A Study on the Mechanical Properties of Heated Plates by Induction Heating System (고주파 유도가열된 조선용 강판의 기계적 특성 연구)

  • Hyun, Chung Min;Yi, Myung Su;Cho, Si Hoon;Jang, Tae Won
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • Due to of high intensity, lower noise and easy controllability of the heat, induction heating system became well known. Induction heating method has been suggested as substitute for the gas heat source and adopted in the automation of curved hull forming system. In this study, an investigation was accomplished to find the effects on the change of material properties when the induction heating was applied on the mild steel plate. Plates were heated using weaving method to get sufficiently heat affected zone and then cooled with water or in the air. The mechanical properties of the heated plate were evaluated. As results, the tensile test, impact test and microstructures satisfied the class rule.

A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구)

  • Lee, Doo-Sung;Lee, Sung-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.367-373
    • /
    • 2008
  • In the design of horizontally curved plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear. Currently, elastic shear buckling coefficients of curved web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that straight web panels without curvature are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the curved plate girder, the elastically restrained support may behave rather closer to a fixed support. The buckling strength of curved girder web is much greater (maximum 38%) than that of a straight girder calculated under the assumption that all four edges are simply supported in Lee and Yoo (1999). In the present study, a series of numerical analyses based on a 3D finite element modeling is carried out to investigate the effects of geometric parameters on both the boundary condition at the juncture and the horizontal curvature of web panel, and the resulting data are quantified in a simple design equation.

Experimental Study on Ultimate Shear Strength of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 극한전단강도에 관한 실험연구)

  • Lee, Doo Sung;Park, Chan Sik;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.727-734
    • /
    • 2006
  • Although a limited number of experimental investigations and finite element analyses revealed that a curved web panel in practical design has a considerable reserve strength after the elastic buckling as a straight girder web panel, the current Guide Specifications for Horizontally Curved Steel Girder Highway Bridges (AASHTO, 2003) do not consider the postbuckling strength in the ultimate shear strength due to lack of a comprehensive study. In this study, the ultimate shear strength behavior of horizontally curved steel web panels was investigated through nonlinear finite element analysis and experimental test. It was found that curved web panels used in practical designs are able to develop the postbuckling strength that is equivalent to that of straight girder web panels having the same dimensional and material properties.

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

Buckling Strength Increment of Curved Panels Due to Rotational Stiffness of Closed-Section Ribs Under Uniaxial Compression

  • Andico, Arriane Nicole P.;Park, Yong-Myung;Choi, Byung H.
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1363-1372
    • /
    • 2018
  • Recently, there have been studies about the increasing effect on the local plate buckling strength of flat plates when longitudinally stiffened with closed-section ribs and an approximate solution to quantitatively estimate these effects were suggested for flat plates. Since there are few studies to utilize such increasing effect on curved panels and a proper design method is not proposed, thus, this study aims to numerically evaluate such effect due to the rotational stiffness of closed-section ribs on curved panels and to propose an approximate method for estimating the buckling strength. Three-dimensional finite element models were set up using a general structural analysis program ABAQUS and a series of parametric numerical analyses were conducted in order to examine the variation of buckling stresses along with the rotational stiffness of closed-section ribs. By using a methodology that combine the strength increment factor due to the restraining effect by closed-section ribs and the buckling coefficient of the panel curvature, the approximate solutions for the estimation of buckling strength were suggested. The validity of the proposed methods was verified through a comparative study with the numerical analysis results.

The Structural Characteristics of Non-slip Device in Connecting Method Between Steel Pipe Pile and Footing (미끌림 방지턱을 이용한 강관말뚝 머리 결합부의 구조특성에 관한 실험적 연구)

  • 박영호;김낙영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.227-243
    • /
    • 2003
  • To find the structural characteristics of non-slip device in connecting method B between steel pipe pile and concrete footing, compression and uplift test was performed for full sized specimens not having non-slip device, those having non-slip device with two curved steel plate bars welded inside the steel pipe pile(standard method), and those having non-slip device with serveral curved steel plate bars bolted inside the steel pipe pile(new method). As a result, specimens not having non-slip device had chemical debonding failure at 15.6tonf of peak uplift load and 27.57tonf of peak compression load. And the standard method and the new method showed about 8.9 times of peak uplift load and 6.2 times of peak compression load higher than specimens not having non-slip device. The load transfers of lower non-slip devices of the standard method and the new method were similar in behavior, while the higher non-slip device of the new method showed higher ratio of load transfer than that of the standard method. And these two methods had nearly the same composite action and structural capacity caused by non-slip devices.