• Title/Summary/Keyword: curved bridges

Search Result 94, Processing Time 0.021 seconds

Study on Temperature Load of Curved Steel Box Girder Bridges (곡선강박스거더교의 온도하중에 관한 연구)

  • Kim Sang-Hyo;Cho Kwang-Il;Hong Ju-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.20-27
    • /
    • 2005
  • Solar radiation causes non-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Especially in cases of curved steel box girder bridges, non-uniform temperature distribution due to solar radiation can reduce bridge life and serviceability when combined with another load combination. In this study, the method for predicting the temperature distribution of curved bridges developed by Kim et al., was used to predict the non-uniform temperature distribution which served as a basis for structural analysis of 3-D bridge behavior. In order to seek the most unfavorable conditions of solar radiation, observation data from the Korea Meteorological Administration for solar radiation were analyzed. The region of the most high solar radiation condition was selected and its one year variation of the solar radiation data was considered. From this analysis, the most unfavorable solar radiation condition with lower solar altitude and intense solar radiation was selected. Based on the selected solar radiation condition, structural behavior of curved bridges with diverse bridge direction, span length, radius and support conditions are analyzed.

  • PDF

A Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section (등단면 I-형 곡선 격자형교의 영향선에 관한 연구)

  • Chang, Byung Soon;Ryoo, Eun Yeol;Joo, Jae Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.501-513
    • /
    • 1997
  • The general behavior of curved girder including the warping effects is formulated by series of differential equations postulated by Vlasov. In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion, the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges are obtained by using the finite difference method.

  • PDF

Free Vibration Analysis of Horizontally Curved I-Girder Bridges using the Finite Element Method (유한요소법을 이용한 수평곡선 I형교의 자유진동해석)

  • Yoon, Ki Yong;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.47-61
    • /
    • 1998
  • The behavior of horizontally curved I-girder bridges is complex because the flexural and torsional behavior of curved girders are coupled due to their initial curvature. Also, the behavior is affected by cross beams. To investigate the behavior of horizontally curved I-girder bridges, it is necessary to consider curved girders with cross beams. In order to perform free vibration analyses of horizontally curved I-girder bridges, a finite element formulation is presented here and a finite element analysis program is developed. The formulation that is presented here consists of curved and straight beam elements, including the warping degree of freedom. Based on the theory of thin-walled curved beams, the shape functions of the curved beam elements are derived from homogeneous solutions of the static equilibrium equations. Third-order hermits polynomials are used to form the shape functions of the straight beam elements. In the finite element analysis program, global stiffness and mass matrix are composed, based on the Cartesian coordinate system. The Gupta method is used to efficiently solve the eigenvalue problem. Comparing the results of several examples here with those of previous studies, the formulation presented is verified. The validity of the program developed is shown by comparing results with those analyzed by the shell element.

  • PDF

Distribution of Wheel Loads on Curved Steel Box Girder Bridges (곡선 강상자형교의 윤하중 분배)

  • Kim, Hee-Joong;Lee, Si-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In the case of horizontally curved bridges, the use of curved composite box girder bridges are increased due to its functionality and for aesthetical reason. As it compared with the open section, the steel box girder bridges have advantages to resistant of distortion and corrosion. In practice the grid analysis is conducted by utilizing only the cross beam. Since the stiffness of the concrete slab is not included in the grid analysis, the cross beam is induced the distribution of the live load. In this study the affects of the radius of curvature, the number of diaphragm and cross beam to the load distribution of the curved steel box girder bridge was investigated by applying the finite element method. The results indicate that the curvature of curved bridge had a large affect of the load distribution and as the curvature was increased the load distribution factor was increased. A single diaphragm at the center of girder is important role for the load distribution effects and structural stability, but additional diaphragm did not affect it as much. The affects of the cross beam to the load distribution were investigated and its influence was minor. It can be safely concluded that the addition of cross beam does not aid the purpose of the live load distribution. And the stiffness of concrete slab for the load distribution effects should be concerned in the design of curved steel box girder bridges.

A Study on the Structural Analysis of Curved Two Girder Bridges for AGT System (경량전철용 곡선 2주형 판형교의 적용성에 관한 연구)

  • Seong Taek-Ryong;Yoon Tae-Yang;Lee An-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.382-387
    • /
    • 2003
  • This research has investigated structural characteristics of curved two girder bridges proposed for AGT system and analyzed the results of the structural analysis of three different modelings for 3 span continuous bridge, each modeled in grillage modeling, simplified 3D modeling, and detailed 3D modeling respectively. The grillage modeling appeared to be somewhat underestimated in deflection and overestimated in rotation with respect to 3D modelings. Also, it is impossible to make a detailed examination of local buckling and details of cross beams, etc. The point that warping effect cannot be considered may cause the structural analysis unsafe, accordingly the structural analysis of curved two girder bridges should be done with 3D modelings.

  • PDF

A Study of the Distortional Effect on Curved Box Girder Bridge (곡선박스거더교의 뒤틀림효과에 대한 연구)

  • Nguyen, Van Ban;Han, Taek-Hee;Kim, Sung-Nam;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.525-530
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distributional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show up an extensive parametric study on distortional behavior of curved box girder with trapezoidal section. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

Structural Performance Evaluation of a Precast PSC Curved Girder Bridge Constructed Using Multi-Tasking Formwork

  • Kim, Sung-Jae;Kim, Jang-Ho Jay;Yi, Seong-Tae;Noor, Norhazilan Bin Md;Kim, Sung-Chul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.1-17
    • /
    • 2016
  • Recently, advanced transit systems are being constructed to reduce traffic congestions in metropolitan areas. For these projects, curved bridges with various curvatures are required. Many curved bridges in the past were constructed using aesthetically unpleasant straight beams with curved slabs or expensive curved steel box girders with curved slabs. Therefore, many recent studies have been performed to develop less expensive and very safe precast prestressed concrete (PSC) curved girder. One method of reducing the construction cost of a PSC curved girder is to use a reusable formwork that can easily be adjusted to change the curvature and length of a girder. A reusable and curvature/dimension adjustable formwork called Multi-tasking formwork is developed for constructing efficient precast PSC curved girders. With the Multi-tasking formwork, two 40 m precast PSC box girders with different curvatures were constructed to build a two-girder curved bridge for a static flexural test to evaluate its safety and serviceability performance. The static flexural test results showed that the initial cracking load was 1400 kN, exceeding the design cracking load of 450 kN. Also, the code allowed deflection of 50 mm occurred at a load of 1800 kN, verifying the safety and serviceability of the precast PSC curved bridge constructed using the multi-tasking formwork.

The Characteristics of Natural Frequencies of the Curved Bridge with Singly Symmetric Cross Sections (1축 대칭단면을 갖는 곡선교의 고유진동수특성)

  • Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1281-1288
    • /
    • 1994
  • Beams curved in plan are often designed with the circular curved member system including warping effects. In this study, the curved bridges are idealized as the circular curved member system with singly symmetric cross sections and simply supported ends. Displacement fields of them to satisfy the boundary conditions are expanded by Fourier series and the governing equation of natural frequencies of them is derived. The distributions of the characteristics of natural frequencies of them are shown according to the variations of relevant parameters-angle of intersection, curvature, and parameter of symmetry of cross section which can represent the properties of the curved bridges. A parametric study is conducted to investigate the effect of relevant parameters on natural frequencies.

  • PDF

A Study on the Approximate Analysis of the Bending Moment for the Three-Span Continuous Curved Girder Bridges with Constant Cross Section (등단면 3경간 연속 곡선격자형교의 휨모멘트 근사해석에 관한 연구)

  • Chang, Byung Soon;Seo, Sang Geun;Cha, Ki Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.131-142
    • /
    • 1999
  • The general behavior of the curved girder including the warping effects can be presented as the series of differential equations developed by Vlasov. Generally, bending moment is the most important factor for engineer to decide the section of the girder. In order to accommodate easiness of the structural analysis for the curved girder bridge, this paper suggest the ratios of bending moment of curved gilder to that of straight girder. These ratios are presented by an approximate formula setting central angle ${\theta}(L/R)$ as a variable. The approximate formula of the maximum bending moment ratios and influence lines of all stress resultants can be used to design the three-span curved girder bridges.

  • PDF

A Comparative Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section and Variable Cross Section (등·변단면 I-형 곡선격자형교의 영향선에 관한 비교연구)

  • Chang, Byung Soon;Seo, Sang Geun;Ryoo, Eun Yeol;Yun, Jeung Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.615-627
    • /
    • 1998
  • In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion. the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. The fundamental differential equation concerning the behaviour with warping effects for the curved girder is developed by Vlasov. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges with variable and constant cross section are obtained by using the finite difference method and compared with respectively.

  • PDF