• 제목/요약/키워드: curve function

검색결과 1,468건 처리시간 0.025초

On the Selection of Bezier Points in Bezier Curve Smoothing

  • Kim, Choongrak;Park, Jin-Hee
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1049-1058
    • /
    • 2012
  • Nonparametric methods are often used as an alternative to parametric methods to estimate density function and regression function. In this paper we consider improved methods to select the Bezier points in Bezier curve smoothing that is shown to have the same asymptotic properties as the kernel methods. We show that the proposed methods are better than the existing methods through numerical studies.

Parameter Estimation and Prediction for NHPP Software Reliability Model and Time Series Regression in Software Failure Data

  • Song, Kwang-Yoon;Chang, In-Hong
    • 통합자연과학논문집
    • /
    • 제7권1호
    • /
    • pp.67-73
    • /
    • 2014
  • We consider the mean value function for NHPP software reliability model and time series regression model in software failure data. We estimate parameters for the proposed models from two data sets. The values of SSE and MSE is presented from two data sets. We compare the predicted number of faults with the actual two data sets using the mean value function and regression curve.

CHORD AND AREA PROPERTIES OF STRICTLY CONVEX CURVES

  • Kim, Dong-Soo;Kim, Incheon
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.801-815
    • /
    • 2021
  • Ellipses have a lot of interesting geometric properties. It is quite natural to ask whether such properties of ellipses and some related ones characterize ellipses. In this paper, we study some chord properties and area properties of ellipses. As a result, using the curvature and the support function of a strictly convex curve, we establish four characterization theorems of ellipses and hyperbolas centered at the origin.

Lambert W 함수를 이용한 태양전지 모델링 (The solar cell modeling using Lambert W-function)

  • 배종국;강기환;김경수;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.278-281
    • /
    • 2011
  • This system can predict the maximum output about all illumination levels so that the PV system designer can design the system having the best efficiency. For the output prediction exact about the solar cell, that is the device the basis most in the PV system, the basis has to be in order to try this way. The solution based on Lambert W-function are presented to express the transcendental current-voltage characteristic containing parasitic power consuming parameters like series and shunt resistances. A simple and efficient method for the extraction of a single current-voltage (I-V) curve under the constant illumination level is proposed. With the help of the Lambert W function, the explicit analytic expression for I is obtained. And the explicit analytic expression for V is obtained. This analytic expression is directly used to fit the experimental data and extract the device parameters. The I-V curve of the solar cell was expressed through the modeling using Lambert W-function and the numerical formula where there is the difficulty could be logarithmically expressed This method expresses with the I-V curve through the modeling using Lambert W-function which adds other loss ingredients to the equation2 as to the research afterward. And the solar cell goes as small and this I-V curve can predict the power penalty in the system unit.

  • PDF

가스압 소결된 질화규소의 R-Curve 거동 (R-Curve Behavior in a Gas-Pressure Sintered Silicon Nitride)

  • 김상섭;김성진;백성기
    • 한국세라믹학회지
    • /
    • 제29권12호
    • /
    • pp.949-955
    • /
    • 1992
  • R-curves, fracture resistance (KR) as a function of crack extension (Δa), of a gas-pressure sintered monolithic Si3N4 were determined by controlled flaw/strength technique. Rising R-curve behavior was observed, confirming the operation of microstructural toughening process during crack growth. The R-curve parameters, k and m in the equation, KR=k(Δa)m, were determined to 30.301 and 0.1146, respectively. Microstructural observation of growing crack revealed that the bridging in the crack wake by unbroken ligament of large elongated ${\beta}$-grains was the mechanism primarily for the rising R-curve behavior.

  • PDF

개선된 직접 곡률 조작법을 이용한 선형의 순정 (Hull Fairing by Modified Direct Curvature Manipulation Method)

  • 윤태경;김동준
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.169-173
    • /
    • 1999
  • In this paper some modifications for Lu's inverse method of fairing process are presented. The object function is changed and additional constraints for hull curve foiling is proposed. The newly introduced minimizing object function is the sum of the distances between the two curve's positions at the same parameter values instead of the sum of the distances between two vertices. The new one is better to represent the physical meaning of the object function, the smaller differences between two curves. In ship hull fairing the end tangent of curve has to be fined in some cases, so the additional constraint is considered to preserve the direction of end tangent. The sample results are shown.

  • PDF

주파수 전달함수를 이용한 신 포괄 곡선맞춤법 (New Global Curve-Fitting Method Using Frequency Response Function)

  • 민천홍;박한일;배수룡;전재진
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.82-86
    • /
    • 2009
  • Several damping materials have been employed to reduce the vibration of structures. While it is important to estimate the damping matrix when analyzing damped composite structures using the finite element method (FEM), at present, there is no FEM program that can correctly estimate the damping matrix. In this paper, a new global curve-fitting method is proposed for identifying the system parameters of non-proportional damping structures using a frequency response function. An experimental test for a cantilever beam attached damping material was carried out to verify the performance of the method proposed in this study.

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.214-220
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.214-214
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

The Minimum Dwell Time Algorithm for the Poisson Distribution and the Poisson-power Function Distribution

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제4권1호
    • /
    • pp.229-241
    • /
    • 1997
  • We consider discrimination curve and minimum dwell time for Poisson distribution and Poisson-power function distribution. Let the random variable X has Poisson distribution with mean .lambda.. For the hypothesis testing H$\_$0/:.lambda. = t vs. H$\_$1/:.lambda. = d (d$\_$0/ if X.leq.c. Since a critical value c can not be determined to satisfy both types of errors .alpha. and .beta., we considered discrimination curve that gives the maximum d such that it can be discriminated from t for a given .alpha. and .beta.. We also considered an algorithm to compute the minimum dwell time which is needed to discriminate at the given .alpha. and .beta. for the Poisson counts and proved its convergence property. For the Poisson-power function distribution, we reject H$\_$0/ if X.leq..'{c}.. Since a critical value .'{c}. can not be determined to satisfy both .alpha. and .beta., similar to the Poisson case we considered discrimination curve and computation algorithm to find the minimum dwell time for the Poisson-power function distribution. We prosent this algorithm and an example of computation. It is found that the minimum dwell time algorithm fails for the Poisson-power function distribution if the aiming error variance .sigma.$\^$2/$\_$2/ is too large relative to the variance .sigma.$\^$2/$\_$1/ of the Gaussian distribution of intensity. In other words, if .ell. is too small, we can not find the minimum dwell time for a given .alpha. and .beta..

  • PDF