• Title/Summary/Keyword: curvature equation

Search Result 264, Processing Time 0.024 seconds

Modeling for the Natural Vibration Analysis of a Rotating Thick Ring (회전하는 두꺼운 링의 고유진동 해석을 위한 모델링)

  • Kim, Chang-Boo;Kim, Bo-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.107-114
    • /
    • 2007
  • In this paper, the equations of motion by which the natural vibration of rotating thick ring can be analyzed accurately are presented. These equations are derived from the theory of finite deformation and the principle of virtual work. The effects of variation in curvature across the ring cross-section can be considered in these equations. The ring models are called as thick ring model and thin ring model respectively as the effects of variation in curvature are considered or neglected. The radial displacement of ring which is rotating at constant angular velocity is determined by a non-linear equation derived from the principle of virtual work. The equations of the in-plane and out-of-plane vibrations at disturbed state are also formulated from the principle of virtual work. They can be expressed as the combination of the radial displacement at the steady state and the disturbed displacements about the steady state. The natural vibrations of rings with different thickness are analyzed by using the presented ring models and 3-dimensional finite element method to verify accuracy of the presented equations of motion. Its results are compared and discussed.

  • PDF

Prediction of Residual Stress Distribution in Multi-Stacked Thin Film by Curvature Measurement and Iterative FEA

  • Choi Hyeon Chang;Park Jun Hyub
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1065-1071
    • /
    • 2005
  • In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element method (FEM). We evelop a finite element program for residual stress analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi­stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multi layers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the left film after etching layer by layer in multi-stacked film.

In-plane vibrations of cracked slightly curved beams

  • Oz, H. Ridvan
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.679-695
    • /
    • 2010
  • In-plane vibrations of slightly curved beams having cracks are investigated numerically and experimentally. The curvature of the beam is circular and stays in the plane of vibration. Specimens made of steel with different lengths but with the same radius of curvature are used in the experiments. Cracks are opened using a hand saw having 0.4 mm thickness. Natural frequencies depending on location and depth of the cracks are determined using a Bruel & Kjaer 4366 type accelerometer. Then the beam is assumed as a Rayleigh type slightly curved beam in finite element method (FEM) including bending, extension and rotary inertia. A flexural rigidity equation given in literature for straight beams having a crack is used in the analysis. Frequencies are obtained numerically for different crack locations and depths. Experimental results are presented and compared with the numerical solutions. The natural frequencies are affected too much due to larger moments when the crack is around nodes. The effect can be neglected when it is at the location of maximum displacements. When the crack is close to the clamped end, the decrease in the frequencies in all modes is very high. The consistency of the results and validity of the equations are discussed.

EFFECT OF CONCRETE STRENGTH ON FLEXURAL DEFLECTION OF HIGH-STRENGTH REINFORCED CONCRETE BEAMS

  • Inju Lee;Taewan Kim;Sung-Nam Hong;Jie Cui;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1313-1317
    • /
    • 2009
  • Deflections of Reinforced concrete structures must satisfy the permissible values and it is hard to predict the due to uncertainty of deflection of the reinforced concrete structures. Thus, many researchers have suggested a number of experimental equation of deflection against the uncertainty. In a specification, a procedure to evaluate flexure deflection using effective moment of inertia and moment-curvature relation is suggested. ACI offers a method using effective moment of inertia, which has been developed by Branson. Eurocode 2(EC2) suggests a procedure to evaluate deflection of reinforced concrete structure using moment-curvature relation. In this paper, a series of experiments were conducted on the singly reinforced concrete beams which have the same reinforcement ratio and different concrete strength. Therefore, the effect of the concrete strength on the deflection of the beams was analysed. The deflections obtained from the experiment were compared with the deflections calculated with ACI code and EC2.

  • PDF

ON C-BICONSERVATIVE HYPERSURFACES OF NON-FLAT RIEMANNIAN 4-SPACE FORMS

  • Firooz Pashaie
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.237-248
    • /
    • 2024
  • In this manuscript, the hypersurfaces of non-flat Riemannian 4-space forms are considered. A hypersurface of a 4-dimensional Riemannian space form defined by an isometric immersion 𝐱 : M3 → 𝕄4(c) is said to be biconservative if it satisfies the equation (∆2𝐱 ) = 0, where ∆ is the Laplace operator on M3 and ⊤ stands for the tangent component of vectors. We study an extended version of biconservativity condition on the hypersurfaces of the Riemannian standard 4-space forms. The C-biconservativity condition is obtained by substituting the Cheng-Yau operator C instead of ∆. We prove that C-biconservative hypersurfaces of Riemannian 4-space forms (with some additional conditions) have constant scalar curvature.

A Comparative Study on Structural Reliability Analysis Methods (구조 신뢰성 해석방법의 고찰)

  • 양영순;서용석
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-116
    • /
    • 1994
  • In this paper, various reliability analysis methods for calculating a probability of failure are investigated for their accuracy and efficiency. Crude Monte Carlo method is used as a basis for the comparison of various numerical results. For the sampling methods, Importance Sampling method and Directional Simulation method are considered for overcoming a drawback of Crude Monte Carlo method. For the approximate methods, conventional Rackwitz-Fiessler method. 3-parameter Chen-Lind method, and Rosenblatt transformation method are compared on the basis of First order reliability method. As a Second-order reliability method, Curvature-Fitting paraboloid method, Point-fitting paraboloid method, and Log-likelihood function method are explored in order to verify the accuracy of the reliability calculation results. These methods mentioned above would have some difficulty unless the limit state equation is expressed explicitly in terms of random design variables. Thus, there is a need to develop some general reliability methods for the case where an implicit limit state equation is given. For this purpose, Response surface method is used where the limit state equation is approximated by regression analysis of the response surface outcomes resulted from the structural analysis. From the application of these various reliability methods to three examples, it is found that Directional Simulation method and Response Surface method are very efficient and recommendable for the general reliability analysis problem cases.

  • PDF

Equivalent Plastic Hinge Length Model for Flexure-Governed RC Shear Walls (휨 항복형 철근콘크리트 전단벽의 등가소성힌지길이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • The present study proposes a simple equation to straightforwardly determine the potential plastic hinge length in boundary element of reinforced concrete shear walls. From the idealized curvature distribution along the shear wall length, a basic formula was derived as a function of yielding moment, maximum moment, and additional moment owing to diagonal tensile crack. Yielding moment and maximum moment capacities of shear wall were calculated on the basis of compatability of strain and equilibrium equation of internal forces. The development of a diagonal tensile crack at web was examined from the shear transfer capacity of concrete specified in ACI 318-11 provision and then the additional moment was calculated using the truss mechanism along the crack proposed by Park and Paulay. The moment capacities were simplified from an extensive parametric study; as a result, the equivalent plastic hinge length of shear walls could be formulated using indices of longitudinal tensile reinforcement at the boundary element, vertical reinforcement at web, and applied axial load. The proposed equation predicted accurately the measured plastic hinge length, providing that the mean and standard deviation of ratios between predictions and experiments are 1.019 and 0.102, respectively.

A Study on the Through-Flow Analysis for a Multi-Stage Axial Turbine Considering Leakage Flows (누설 유동을 고려한 다단 축류 터빈의 유선곡률해석법에 대한 연구)

  • Kim, Sangjo;Kim, Kuisoon;Son, Changmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • The streamline curvature method is essentially used for the design procedure of multi-stage axial turbines. Moreover, by using this method, it is possible to consider the turbine loss characteristics for real operating conditions at an early design stage. However, there is not enough relevant research in South Korea to support this. In the present study, the streamline curvature method and the empirical equation for calculating the mixing loss are employed to predict the performance of a multi-stage axial turbine with leakage flows. The proposed method is applied to the prediction of the performance of a five-stage axial turbine with leakage flows, as used for an industrial gas turbine of 86 MW in South Korea. The calculation result is compared with 3D CFD data, and the advantages and limitations of the streamline curvature method are described.

Development of Empirical Formula for Transverse Dispersion Coefficient Based on Theoretical Equation in River Bends (만곡부에서 이론식에 기반한 횡분산계수 경험공식 개발)

  • Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.373-378
    • /
    • 2012
  • In this study, a new empirical equation for the transverse dispersion coefficient has been developed based on the theoretical background in river bends. The nonlinear least-square method was applied to determine regression coefficients of the equation. The estimated dispersion coefficients derived by the new equation were compared with observed transverse dispersion coefficients acquired from natural rivers and coefficients calculated by the other existing empirical equations. From a comparison of the existing transverse dispersion equations and the new proposed equation, it appears that the behavior of the existing formula in a relative sense is very much dependent on the friction factor and the river geometry. However, the new proposed equation does not vary widely according to variation of friction factor. Also, it was revealed that the equation proposed in this study becomes an asymptotic curve as the curvature effect increases.

A Numerical Study on the Similarity of the Developing Laminar Flows between in Orthogonally Rotating Square Duct and Stationary Curved Square Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관 내부의 발달하는 층류 유동의 유사성에 관한 수치적 연구)

  • Lee G. H.;Baek J. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.21-30
    • /
    • 2001
  • A numerical study on the similarity of the developing laminar flows between in a straight duct rotating about an axis perpendicular to that of the duct and in a stationary curved duct was carried out. In order to clarify the analogy of two flows, dimensionless parameters K/sub LR/ = Re/(equation omitted) and Rossby number, Ro, in a rotating straight duct were used as a set corresponding to Dean number K/sub LC/ = Re/(equation omitted), and curvature ratio, λ, in a stationary curved duct. For the large values of Ro and λ, it is shown that the flow field satisfies the 'asymptotic invariance property', that is, there are strong quantitative similarities between the two flows such as flow patterns, friction factors, and maximum axial velocity magnitudes for the same values of K/sub LR/ and K/sub LC/ if they are correlated with dimensionless axial distances Z/sub R/ = z/(equation omitted) for a rotating duct flow and Z/sub C/ = z/(equation omitted) for a stationary curved duct flow.

  • PDF