DOI QR코드

DOI QR Code

휨 항복형 철근콘크리트 전단벽의 등가소성힌지길이 모델

Equivalent Plastic Hinge Length Model for Flexure-Governed RC Shear Walls

  • 문주현 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • 투고 : 2013.12.17
  • 심사 : 2014.01.18
  • 발행 : 2014.03.30

초록

본 연구의 목적은 경계요소를 갖는 철근콘크리트 전단벽의 잠재소성힌지길이를 합리적으로 평가할 수 있는 단순모델의 제시이다. 전단벽의 높이에 따른 이상화된 곡률분포로부터, 기본방정식은 항복모멘트와 최대모멘트 그리고 사인장균열에 의한 부가모멘트의 함수로 일반화되었다. 전단벽의 항복모멘트와 최대모멘트는 변형률 적합조건과 힘의 평형조건을 기반하여 산정하였다. 사인장균열 발생의 여부는 ACI 318-11에서 제시된 콘크리트의 전단력으로부터 검토되었으며, 부가모멘트는 Park and Paulay에 의해 제시된 트러스기구를 이용하여 산정하였다. 이들 모멘트식들은 다양한 변수범위에서 변수연구를 수행하였다. 결과적으로 등가소성힌지길이는 주철근 및 수직철근지수와 축력지수의 함수로 제시될 수 있었다. 제시된 등가소성힌지길이의 모델은 실험결과의 비교에서 평균 및 표준편차가 각각 1.019와 0.102로 실험 결과를 정확하게 예측하였다.

The present study proposes a simple equation to straightforwardly determine the potential plastic hinge length in boundary element of reinforced concrete shear walls. From the idealized curvature distribution along the shear wall length, a basic formula was derived as a function of yielding moment, maximum moment, and additional moment owing to diagonal tensile crack. Yielding moment and maximum moment capacities of shear wall were calculated on the basis of compatability of strain and equilibrium equation of internal forces. The development of a diagonal tensile crack at web was examined from the shear transfer capacity of concrete specified in ACI 318-11 provision and then the additional moment was calculated using the truss mechanism along the crack proposed by Park and Paulay. The moment capacities were simplified from an extensive parametric study; as a result, the equivalent plastic hinge length of shear walls could be formulated using indices of longitudinal tensile reinforcement at the boundary element, vertical reinforcement at web, and applied axial load. The proposed equation predicted accurately the measured plastic hinge length, providing that the mean and standard deviation of ratios between predictions and experiments are 1.019 and 0.102, respectively.

키워드

참고문헌

  1. ACI Committee 318 (2011), Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills, MI, 503.
  2. Adebar, P., Ibrahim, A. M. M., and Bryson, M. (2007), Test of a High-Rise Core Wall: Effective Stiffness for Seismic Analysis, ACI Structural Journal, 104(5), 549-559.
  3. Bohl, A., and Adebar, P. (2011), Plastic Hinge Lengths in High-Rise Concrete Shear Walls, ACI Structural Journal, 108(2), 148-157.
  4. Chan, W. W. L. (1955), The Ultimate Strength and Deformation of Plastic Hinges in Reinforced Concrete Frameworks, Magazine of Concrete Research, 7(21), 121-132. https://doi.org/10.1680/macr.1955.7.21.121
  5. Kang, S. M., and Park, H. G. (2002), Ductility Confinement of RC Rectangular Shear Wall, Journal of Korea Concrete Institute, 14(4), 530-539 (in Korean). https://doi.org/10.4334/JKCI.2002.14.4.530
  6. Mattock, A. H. (1967), Discussion of 'Rotational Capacity of Reinforced Concrete Beams' by W.G. Corley, Journal of the Structural Division, ASCE, 93(ST2), 519-522.
  7. Oesterle, R. G., Aristizasbal-Ochoa, J. D., Fiorato, A. E., Russell, H. G., and Corley, W. G. (1979), Earthquake Resistant Structural Walls-Tests of Isolated Walls-Phase II, Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, III., 325.
  8. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, J. E., Russell, H. G., and Corley, W. G. (1976), Earthquake Resistant Structural Walls-Tests of Isolated Walls, Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, III., 315.
  9. Panagiotakos, T. B., and Fardis, M. N. (2001), Deformations of Reinforced Concrete Members at Yielding and Ultimate, ACI Structural Journal, 98(2), 135-148.
  10. Park, R., and Paulay, T. (1975), Reinforced Concrete Structures, Wiley Interscience Publication, New Jersey, USA, 769.
  11. Paulay, T., and Priestley, M. J. N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc., New York, 768.
  12. Paulay, T., and Priestley, M. J. N. (1993), Stability of Ductile Structural Walls, ACI Structural Journal, 90(4), 385-392.
  13. Paulay, T., and Uzumeri, S. M. (1975), A Critical Review of the Seismic Design Provisions for Ductile Shear Walls for the Canadian Code, Canadian Journal of Civil Engineering, 2(4), 592-601. https://doi.org/10.1139/l75-054
  14. Sawyer, H. A. (1964), Design of Concrete Frames for Two Failure Stages, Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, ASCE-ACI, MI, 408-431.
  15. Shiu, K. N., Daniel, J. I, Aristizasbal-Ochoa, J. D., Fiorato, A. E., and Corley, W. G. (1981), Earthquake Resistant Structural Walls-Tests of Walls With and Without Openings, Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, III., 120.
  16. Yang, K. H. (2013), Development of Performance-Based Design Guideline for High-Density Concrete Walls, Technical Report (2nd year), Kyonggi University, 115 (in Korean).