• Title/Summary/Keyword: current-voltage (I-V)

Search Result 951, Processing Time 0.027 seconds

Low-power Single-Chip Current-to-Voltage Converter for Wireless OFDM Terminal Modem (OFDM 용 무선통신단말기 모뎀의 저소비 전력화를 위한 단일칩용 I-V 컨버터)

  • Kim, Seong-Kweon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.569-574
    • /
    • 2007
  • 최근 많은 광대역 유무선 통신 응용분야에서 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 표준기술로 채택하고 있다. OFDM 방식의 고속 무선 데이터 통신을 위한 FFT 프로세서는 일반적으로 DSP(Digital Signal Processing)로 구현되었으나, 큰 전력 소비를 필요로 한다. 따라서, OFDM 통신방식의 단점인 전력문제를 보완하기 위해서 전류모드 FFT LSI가 제안되었고, 저소비전력 전류모드 FFT LSI를 동작시키기 위해서는 전류모드를 전압모드로 바꾸는 VIC(Voltage to Current Converter) 그리고 다시 전류모드를 전압모드로 바꾸어 주는 IVC(Current to Voltage Converter)가 필요하다. 그러나, OP-AMP로 구현되는 종래의 IVC는 회로규모가 크고, 전력소비가 크며, LSI 내에 크고 정확한 높은 저항을 필요로 한다. 또한 전류모드신호처리에서 많이 이용되는 Current Mirror 회로 등의 출력단자로부터 전류신호를 입력받은 경우, 입력단자간의 전위차가 발생하며, DC offset 전류가 발생하는 등의 문제점을 갖는다. 따라서 본 연구에서는 저전력 동작이 가능하고, 향후, single chip 응용이 가능한 IVC를 $0.35{\mu}m$ 공정에서 설계함으로서, $0.35{\mu}m$ 공정에서의 전류모드 FFT LSI의 전압모드 출력이 가능해졌다 설계된 IVC는 FFT LSI의 출력이 디지털신호로 환산한 ${\pm}1$인 점을 감안하여, 전류모드 FFT LSI의 출력이 $13.65{\mu}A$ 이상일 때에 3.0V의 전압을 출력하고, FFT LSI의 출력이 $0.15{\mu}A$ 이하일 때에 0.5V 이하의 전압을 출력하도록 하였으며, IVC의 총 소비전력은 약 1.65mV이하로 평가되었다.

Electrical Properties Associated with Discharge Developments in Water Subjected to Impulse Voltages

  • Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.156-162
    • /
    • 2010
  • This paper describes electrical and optical characteristics of discharge developments in water under inhomogeneous fields caused by impulse voltages. Predischarge current and discharge light images were observed for different water resistivities and applied voltages between the hemispherical water tank and the needle electrode. The electrical parameters characterizing discharge developments are analyzed based on the discharge light images and voltage-current (V-I) curves, and electrical resistances derived by voltage and current waveforms. As a result, when the streamer corona is initiated at the tip of the needle electrode, the transient resistance suddenly drops and V-I curves form a 'loop'. The length of streamer propagation is increased with increasing peak value of the applied voltage, and the streamer corona extension is enlarged with increasing water resistivity. The electrical resistances before streamer corona initiation are rarely changed by different applied voltages. On the other hand, the electrical resistances after streamer corona initiation are found to be inversely proportional to the peak value of the applied voltage, and the decreasing rates for higher water resistivities are much higher than those for lower water resistivities. The time to streamer corona initiation and the time to the second current peak become shorter as the voltage increases. Finally, the calculated resistances after streamer corona initiation are almost the same trace of measured resistances, but they are smaller than the measured values.

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

A study on a modeling method about current-voltage characteristic of HTS tape considering resistance of stabilizer

  • Lee, W.S.;Lee, J.;Nam, S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.9-12
    • /
    • 2013
  • Current-voltage characteristic models of superconducting material are suggested by many researchers. These current-voltage characteristic models are important because they can be used for design or simulation of superconductor devices. But widely used current-voltage models of superconductor wire still have some limitations. For example, a standard E-J power model has no parameters related with stabilizer's resistance in superconductor wire. In this paper, a current-voltage characteristic modeling method for high temperature superconductor (HTS) tape with considering the effect of stabilizer is introduced. And a current-voltage characteristic of a HTS tape is measured under different stabilizer conditions. Those measured current-voltage characteristics of the HTS tape modeled with proposed modeling method and the modeling results are compared.

High-Voltage AlGaN/GaN High-Electron-Mobility Transistors Using Thermal Oxidation for NiOx Passivation

  • Kim, Minki;Seok, Ogyun;Han, Min-Koo;Ha, Min-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1157-1162
    • /
    • 2013
  • We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.

An Efficient Current-Voltage Model for the AlGaAs/GaAs N-P Heterojunction Diode and its Application to HPTs

  • Park, Jae-Hong;Kwack, Kae-Dal
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.99-105
    • /
    • 1997
  • The new classified model for N-p heterojunction diode is derived and used extensively in analyzing the current-voltage(I-V) characteristics of the HBTs. A new classification method is presented in order to simplify I-V equations and easily applied to the modeling of HBTs. This classification method is characterized by the properties of devices such as high level injection, the thickness of one or both bulk regions, the surface recombination and the generation-recombination. The simulation results using the proposed model agree well with the experimentally observed I-V behaviors and show good efficiencies in its application to HBTs with respect to mathematical formulation.

  • PDF

Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems (태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상)

  • Park, Jiwon;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

Electrical conduction phenomena of $C_{22}$--quinolium(TCNQ) langmuir-blodgett films under the high-electric field ($C_{22}$-quinolium(TCNQ) LB막의 고전게 전기전도 현상)

  • 신동명;김태완;홍언식;송일식;유덕선;강도열
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.138-144
    • /
    • 1994
  • Electrical conduction phenomena of $C_{22}$-quinolium(TCNQ) Langmuir- Blodgett(LB) films are reported through a study of current-voltage(I-V) characteristics along a perpendicular direction. The I-V characteristics were investigated by applying a step or a pulse voltage to the specimen as well as changing temperatures in the range of 20-250[.deg. C] It show an ohmic behavior in low-electric field, and a nonohmic behavior in high-electric field. This nonohmic behavior has been interpreted in terms of a conduction mechanism of space-charge limited current and Schottky effect. When the electric field is near the strength of 10$_{6}$ V/cm, there occur anomalous phenomena similar to breakdown. When step or pulse voltage is applied, the breakdown voltage shifts to the higher one as the step or pulse time width becomes shorter. To see the influence of temperature, current was measured as a function of temperature under the several bias voltages, which are lower than that of breakdown. It shows that the current increases to about 103 times near 60-70[.deg. C], and remains constant for a while up to around 150[.deg. C] and then suddenly drops. We have also performed a DSC(differential scanning calorimetry) measurement with $C_{22}$-quinolium(TCNQ) powder in the range of 30-300[.deg. C]. These results imply that the anomalous phenomena occuring in the high electric field are caused by the electrical and internal thermal effect such as a joule heating.ating.

  • PDF

ELECTRICAL FISHING METHOD OF PENAEUS JAPONICUS BATE (보리새우의 전기 어법)

  • KO Kwan Soh;KIM Sang Han;YOON Gab Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.115-120
    • /
    • 1972
  • The data Presented in this Paper, on the body and Jumping voltage of Penaeus japonicus BATE, are part of a current study on shrimp behaviour in order to improve fishing efficiency of the fishing gear. The experiments concerning electrical stimuli was mostly carried out at the Marine Laboratory of Busan Fisheries College in 1972. The following are the results obtained from the present investigations : 1. When the voltages between a pair of electrodes were fixed constant, the voltage drops between them showed almost constant electrical field. 2. Threshold voltages of the animals varied with body direction to the electrical field, i. e., 200 -500 mV for parallel, 500-1400 mV for vertical and 300-800 mV for diagonal ($45^{\circ}$) settings. 3. Jumping voltages of the animals also varied with the body direction to the electrical field; i. e., 250-1000 mV for parallel, 800-2500 mV for vertical and 400-1300 mV for diagonal settings. 4. The shrimp, in general, were more sensitive to the electrical stimuli when oriented to the cathode rather than the anode. 5. Jumping voltages decreased when the interrupted current was applied to the animals, i. e., less than 200 mV for paralled and 500mV for vertical direction of the body to the electrical field.

  • PDF

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.