• Title/Summary/Keyword: current-voltage

Search Result 11,641, Processing Time 0.044 seconds

Compensation of Source Voltage Unbalance and Current Harmonics in Series Active and Shunt Passive Power Filters

  • Lee G-Myoung;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.586-590
    • /
    • 2001
  • In this paper, a novel control scheme compensating source voltage unbalance and harmonic currents for hybrid active power filters is proposed, where no low/high-pass filters are used in compensation voltage composition. The phase angle and compensation voltages for source harmonic current and unbalanced voltage components are derived from the positive sequence component of the unbalanced voltage set, which is simply obtained by using digital all-pass filters. Since a balanced set of the source voltage obtained by scaling the positive sequence components is used as reference values for source current and load voltage, it is possible to eliminate the necessity of low/high-pass filters in the reference generation. Therefore the control algorithm is much simpler and gives more stable performance than the conventional method. In addition, the source harmonic current is eliminated by compensating for the harmonic voltage of the load side added to feedback control of the fundamental component.

  • PDF

Reduction of common mode voltage and high frequency leakage current generated by the PWM voltage source inverter using common mode voltage damper (능동보조회로를 이용한 전압형 PWM 인버어터 시스템에서의 커먼 모드전압과 고주파 누설전류 억제방법에 관한 연구)

  • 전진휘;박성준;김광태;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.373-376
    • /
    • 1999
  • This paper propose a "common mode voltage damper" that is capable of reducing the common mode voltage produced in the PWM VSI. An push-pull circuits and high frequency leakage current damper[1] are incorporated into the "common mode voltage damper", the design method of which is presented. Effect of "common mode voltage damper" is simulated in this paper verifies the viability and effectiveness in 2.2kW induction motor drive using IGBT inverter. Simulated results show that "common mode voltage damper" makes significant contributions to reducing a high frequency leakage current.ducing a high frequency leakage current.

  • PDF

An Analysis of Optimal Link Voltage of VS-SVPWM for Current Harmonics Reduction

  • Lee Dong-Hee;Park Han-Woong;Ahn Jin-Woo;Kwon Young-Ahn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.343-346
    • /
    • 2002
  • In recent, complex SVPWM (Space Vector PWM) algorithm can be easily implemented by high performance microprocessor and DSP. Various SVPWM techniques are widely studied due to the advantages of low harmonic distortion and high use ratio of D.C. link voltage. Most of various studies for improving of VS-PWM inverter performance are concentrated about switching pattern and zero pulse pattern split algorithms. However, dc link voltage that is determined at rated load and speed conditions is not proper in the low speed and under rated load. In this paper, analysis of current ripple with digitally implemented SVPWM inverter is introduced according to link voltage. The optimal link voltage in the designed inverter system and load condition is provided in order to suppress output voltage error and current ripple. As remaining the effective voltage vector interval per sampling period sufficiently, additional voltage error and current ripple are suppressed. The proposed algorithm is verified through digital simulation and experimental results.

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.

A New Overmodulation Strategy for Traction Dirve. (견인용 인버터를 위한 새로운 과변조 기법)

  • 배본호;설승기;김상훈;이인석;한성수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.171-178
    • /
    • 1998
  • This paper proposes a new overmodulation strategy to give a better voltage utilization by tracking voltage vector along hexagon sides. This strategy enables the inverter to control both magnitude and angle of current. Therefore, the vector control using this strategy can lead to better output torque dynamics compared to the conventional slip frequency control with six-step voltage, which is widely used in the traction drive. In this strategy, the d-axis output voltage of a current controller to control the flux is conserved and the q-axis output voltage to control the torque is controlled to place the voltage vector on the hexagon boundary In case of overmodulation. The limited q-axis voltage is used for anti-windup of q-axis current controller. This paper also presents a new field weakening scheme which incorporate the proposed overmodulation strategy. In this scheme, the flux level is selected by both required current limit and the available maximum voltage along hexagon sides. The validity of the proposed overall scheme is confirmed by the computer simulations for a typical traction drive with a 210[㎾] induction motor.

  • PDF

Comparison of Current-Voltage Characteristics of Nanosheet FET and FinFET (Nanosheet FET와 FinFET의 전류-전압 특성 비교)

  • Ahn, Eun Seo;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.560-561
    • /
    • 2022
  • In this paper, current-voltage characteristics of various types of Nanosheet FET (NSFET) and FinFET are simulated with 3D device simulator. The threshold voltage and subthreshold swing extracted from the simulated current-voltage characteristics of NSFET and FinFET were compared. Both of threshold voltage and drain current of NSFET are higher than those of FinFET. The subthreshold voltage swing (SS) of NSFET is steeper than that of FinFET.

  • PDF

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Song, Ki-Nam;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Han, Seok-Bung;Song, Ki-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

Influence of Tunneling Current on Threshold voltage Shift by Channel Length for Asymmetric Double Gate MOSFET (비대칭 DGMOSFET에서 터널링 전류가 채널길이에 따른 문턱전압이동에 미치는 영향)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1311-1316
    • /
    • 2016
  • This paper analyzes the influence of tunneling current on threshold voltage shift by channel length of short channel asymmetric double gate(DG) MOSFET. Tunneling current significantly increases by decrease of channel length in the region of 10 nm below, and the secondary effects such as threshold voltage shift occurs. Threshold voltage shift due to tunneling current is not negligible even in case of asymmetric DGMOSFET to develop for reduction of short channel effects. Off current consists of thermionic and tunneling current, and the ratio of tunneling current is increasing with reduction of channel length. The WKB(Wentzel-Kramers-Brillouin) approximation is used to obtain tunneling current, and potential distribution in channel is hermeneutically derived. As a result, threshold voltage shift due to tunneling current is greatly occurred for decreasing of channel length in short channel asymmetric DGMOSFET. Threshold voltage is changing according to bottom gate voltages, but threshold voltage shifts is nearly constant.

Class A CMOS current conveyors (A급 CMOS 전류 콘베이어 (CCII))

  • 차형우
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.1-9
    • /
    • 1997
  • Novel class A CMOS second-generation current conveyors (CCII) using 0.6.mu.m n-well standard CMOS process for high-frequency current-mode signal processing were developed. The CCII consists of a regulated current-cell for the voltage input and a cascode current mirror for the current output. In this architecture, the two input stages are coupled by current mirrors to reduce the current input impedance. Measurements of the fabricated cCII show that the current input impedance is 308 .ohm. and the 3-dB cutoff frequency when used as a voltage amplifier extends beyond 10MHz. The linear dynamic ranges of voltage and current are from -0.5V to 1.5V and from -100.mu.A to +120.mu.A for supply voltage V$\_$DD/ = -V$\_$SS/=2.5V, respectively. The power dissipation is 2 mW and the active chip area is 0.2 * 0.2 [mm$\^$2/].

  • PDF